


Welcome! 

• Over half of you have already submitted Problem Set 0 and we 
haven't even given a real slide yet!

• Trying to get in? This pilot course is currently oversubscribed and I do 
not anticipate being able to take anyone else on, unfortunately.

• I am scheduled to offer this course again in the Fall with the 
enrollment doubled.



Who am I?

• Kris Jordan

• Teaching Professor since 2015
• Graduated from UNC with a BS in Computer Science in 2007

• This course was a missing course for me when I graduated…
• … and it's been a missing course in the department since.

• I'm really excited to bring this course to life and believe you're the 
best possible group to help me pilot his course.



Why should you take this course?

• Computer scientists and software engineers depend on tools and 
utilities frequently in their day-to-day work:
• Command-line shells

• Project build systems

• Regular expressions

• Modal text editors

• Documentation markup languages

• Version control systems

• Wielding these tools well is a force multiplier when solving real software 
engineering, task automation, and data processing pipelines.



Each of these tools has its own "Little Language"

• The phrase "Little Language" is a term coined by Jon Bentley (UNC '76):

"Languages surround programmers, yet many programmers don't 
exploit linguistic insights. Examining programs under a linguistic light 
can give you a better understanding of the tools you now use, and can 
teach you design principles for building elegant interfaces to your 
future programs."



This course will not teach you all of the tools...

• Or even most of them. Knowing them all, like knowing every programming 
language or every spoken language, is impossible.

• This course will teach you how to think about little languages, their structure, 
and how to implement your own.

• We will structure the course around case studies of the enduring, brilliant, and 
historically significant little languages most computer scientists and software 
engineers make use of frequently today...

...most of which were invented in the 70s!

• Thus, you will leave with a solid handle on important tools that can 
improve your productivity and enable you to automate tedious tasks away.



Discussion: Form groups of 2 or 3

1. Introduce Yourselves!
• Name, year, what other courses you're taking.

2. Write down up to 4 of each of the following two categories:
• Little Languages BOTH or ALL THREE of you have written and had a computer interpret.
• Little Languages ONLY ONE of you has written and had a computer interpret.

3. Have 4 of each? Rank order the ones everyone uses in terms of 
value/frequency/importance.

• You'll have 4 minutes and then we'll come back together as a group.



Little Languages Discussion

pollev.com/compunc



Survey on Academic Dishonesty

• The department is trying to get a better sense of how students 
experience and perceive academic dishonesty among peers, if at all.

• Please respond to the following survey and check-in on PollEv when 
completed:

http://bit.ly/cs-cheating-survey

• Check-in on PollEv.com/compunc when complete

http://bit.ly/cs-cheating-survey


Meet your Team

• Helen Qin

• Tabatha Seawell

• Duncan Britton

• Hank Hester

• Jay Randolph

• Brooks Townsend



Graded Components of the Course

• Quizzes and Participation - 10%

• Problem Sets, Guided Reading Questions, and Worksheets - 30%

• 2x Midterms - 20% per - tentatively:
• Monday, February 18th

• Monday, April 1st

• Final - 20% - Thursday, May 2nd, at 12pm



Collaboration Policy

• General Course Content – Collaborate away!

• Problem Sets, GRQs, Worksheets, no:
1. Sharing code or letting a peer or someone outside the staff view your code

2. Use shared code or view someone else's code

3. Type on a peer's keyboard or let anyone else type on yours

• With proper citation in the headers (add a collaborators line), you are allowed to:
1. Discuss high-level concepts, approaches, and pseudo-code ideas on whiteboards

2. Help debug a peer's code by viewing their screen under the following conditions:
1. Your own laptop must be fully closed and you may not share any code or "tell them what to do"

2. You may not touch their keyboard

3. They should do 80% of the talking, your 20% should be asking questions



Course Website

https://comp590-19s.github.io/

All grading will be done via Gradescope.

https://comp590-19s.github.io/


How to get help?

• Piazza
• Link in footer of course site.
• Think of it as a class wide study group, don't expect immediate answers.
• Please try Googling your question first!
• If you're answering, answer no differently than if you were speaking face-to-face.

• Office Hours via Course Care
• Link in the footer of the website
• We will post the help schedule to course care soon
• If you got stuck in your initial install, we will be going back to Sitterson 008 today 

and Friday to help.



Course Virtual Machine

• Most of you have the virtual machine installed and ready to go. The rest of 
you should tonight or tomorrow!
• Soft deadline: Friday
• Hard deadline: Monday

• We'll work in a Linux environment all semester and with a variety of tools 
that are preinstalled on the virtual machine.
• You'll learn to work with the vim text editor!

• The experience you gain working in this environment will pay dividends in 
the rest of your career at UNC and beyond.
• You'll be comfortable working at the command-line
• You'll learn to work with the vim text editor!



How you 
feel right 
now.



How you'll feel 
for the first 
monthish…



How you'll 
feel in May.



Your love, enjoyment, and appreciation of the 
work you'll do this semester…

Time

Love

Today May2019??May 2019??



Course Text

• Readings will be regularly assigned, starting 
today.

• These will be from the official course book 
"Programming Rust" by Blandy and 
Orendorff

• Be sure your edition is at least 1st Edition 
Third Release (2018-06-22)



Guided Reading Questions (GRQs)

• When readings are assigned there will be 
Guided Reading Questions provided, as 
well.

• The instructions for working on GRQs is 
on Resources > Course Materials & GRQs

• You will edit these in a little language 
called Markdown on the Virtual Machine.



First Assignment Deadlines

• PS00 – Hello, World
• Sunday 1/13 at 11:59pm

• GRQ00 – Ch 1 and Ch 2 (thru Handling CLI Arguments)
• Monday 1/14 at 11am



We’d love feedback throughout the semester.

• I welcome feedback on all aspects of the course

• Feel free to email me feedback directly or share with a UTA.

• Please give us feedback while we have time to act on it!

• I’ll also take class wide feedback through the semester.



How does this course relate to others?
• Every Course

• Every course has tools at work behind the scenes. Some hide them more than others. The more 
you understand about how they work they more effective you'll be at solving problems.

• COMP431 – Networking
• Protocols are little languages that need to be parsed

• COMP455 – Theory of Automata
• We will make concrete and real the foundational ideas of 455
• My dream: many of you saying "Ohhhh… so that's why a non-deterministic finite state machine is 

useful." or "Wait. Regular expressions are useful?"

• COMP520 – Compilers
• Building a true programming language compiler requires techniques you'll see first here and gain 

far more depth on in 520. You'll also handle semantic analysis (type checking) and generate 
machine code in a way we will not.

• COMP530 – Operating Systems
• You will gain foundational concepts of OS APIs in this course which will help you succeed in 530.




