
© Kris Jordan 2019 - All Rights Reserved

What is vim?

• It is vi iMproved!
... but what is vi?

• It is a visual text editor.
... what the heck is a nonvisual text editor??!?!

• Let's take a look at one!
• ed - The original unix editor.

Example`ed` session $ ed
a
This is an example of the ed editor.
You are now adding lines to a buffer.
End mode by a line with a period.
.
w some.txt
130
1p
This is an example of the ed editor.
1,3p
This is an example of the ed editor.
You are now adding lines to a buffer.
End mode by a line with a period.
2d
1,2p
This is an example of the ed editor.
End mode by a line with a period.
q

a: append mode

. on its own line
ends append
mode

w <filename>
writes the
contents to the
file

1p prints the first
line

• The ed editor was developed in
August 1969
• Same month as Woodstock!

• Ken Thompson was the original
author

• We're only looking at it for
historical context that tells us two
things:

1. Ken Thompson and Dennis Ritchie
created the Unix operating system
and the C programming language in
ed. Think about that...

2. Having a visual mode that shows
you the contents of your file as you
are working on it is a MAJOR
improvement

1,3p prints lines 1
through 3

2d deletes the
second line

q quits

What is vim?

• vim (1991) - A visual text editor whose lineage traces back to ed/ex, and
its direct predecessor vi (1976).
• Still very actively developed today! Version 8's last stable release was in 2018.

• It is a modal / stateful text editor.

• normal mode - you are speaking a little command language with keys

• insert mode - your keystrokes are inserting text into the "buffer"

• visual mode - mode allowing selection of text

• ex (ed) mode - a colon : followed by a command is ed's language!

• Once you start "speaking" vim's language, you'll feel like a wizard.

Normal
Mode

Insert
Mode

• i - insert
•a - append
•c - change*
•o - insert on new line below

•Ctrl+[
•Esc

Visual
Mode

v
•v
•Ctrl+[, Ctrl+[
•d - delete
•y - yank (copy)

c - change
: colon

Ex (ed)
Mode

: colon

•backspace (delete colon)
•Ctrl+[, Ctrl+[
•ed command + enter

State Transitions in vim
•ZZ - quit and write (save changes)
•ZQ - quit w/o write (don't save changes)

• :wq - write and quit
• :q! - quit w/o write

Exploring vim's Little Command Language

• A grammar is a formal specification of the rules that define a
structured language's syntax.

• The same ideas and specifications of grammars apply to little
languages just the same as general purpose programming languages.

• Our exploration of grammars will begin more intuitively than formally
and more pragmatically than theoretically.
• In COMP455 you will explore the deep theoretical basis of grammars and

their formal boundaries, limitations, and characteristics.

What makes up a grammar?

1. Terminals - the elementary symbols of a language (i.e. letters, numbers,
whitespace, and reserved words)

2. Nonterminals - "syntactic variables" that are replaced by production
rules

3. Production Rules - a nonterminal "name" for the rule, followed by ->,
and a sequence of terminals, nonterminals, and alternations |

4. Start symbol - The nonterminal symbol the grammar starts with

command -> cursor_to

cursor_to -> location

location -> line-below | line-above |

char-before | char-after |

/* ... other locations ... */

line-below -> 'j'

line-above -> 'k'

char-before -> 'h'

char-after -> 'l'

Example Grammar

command -> cursor_to

cursor_to -> location

location -> line-below | line-above |

char-before | char-after |

/* ... other locations ... */

line-below -> 'j'

line-above -> 'k'

char-before -> 'h'

char-after -> 'l'

Example Grammar - Terminals

Terminals: Chars in single
quotes, keywords in double

command -> cursor_to

cursor_to -> location

location -> line-below | line-above |

char-before | char-after |

/* ... other locations ... */

line-below -> 'j'

line-above -> 'k'

char-before -> 'h'

char-after -> 'l'

Example Grammar - Nonterminals

Nonterminals: Words like
variable names.

command -> cursor_to

cursor_to -> location

location -> line-below | line-above |

char-before | char-after |

/* ... other locations ... */

line-below -> 'j'

line-above -> 'k'

char-before -> 'h'

char-after -> 'l'

Example Grammar - Production Rules

A production rule defines the
meaning of a nonterminal.

command -> cursor_to

cursor_to -> location

location -> line-below | line-above |

char-before | char-after |

/* ... other locations ... */

line-below -> 'j'

line-above -> 'k'

char-before -> 'h'

char-after -> 'l'

Example Grammar - Alternation "OR"

The vertical bar is read as OR:
A location nonterminal can be substituted
with any one of line-below OR line-above OR
char-before OR char-after OR ...

command -> cursor_to

cursor_to -> location

location -> line-below | line-above |

char-before | char-after |

/* ... other locations ... */

line-below -> 'j'

line-above -> 'k'

char-before -> 'h'

char-after -> 'l'

Example Grammar - Start Symbol

We'll signify the start symbol
with an underline. This is what

we're ultimately trying to derive.

command -> cursor_to

cursor_to -> location

location -> line-below | line-above |

char-before | char-after |

/* ... other locations ... */

line-below -> 'j'

line-above -> 'k'

char-before -> 'h'

char-after -> 'l'

Example Grammar - Parsing an Input
Suppose you enter the input string 'h'. Is
there a valid parsing given this grammar?

command

cursor_to

location

char-before

'h'

In other words, is there a valid
sequence of replacements we
can make of nonterminals,
starting from command, that
result in the input string?

Intentionally chosen nonterminal names and clever organization of
production rules in a grammar helps us derive meaning from inputs...

command

cursor_to

location

char-before

'h'

Move the cursor to...

...the following location...

...the character before where
the cursor currently is.

command -> cursor_to

cursor_to -> LOCATION

Location Terminal

line below j

line above k

char left h

char right l

first char of line ^

last char of line $

next word w

previous word b

end of next word e

next occurrence of word *

previous occurrence of word #

start of file gg

end of file G

There are lots of location terminals in vim!

These are the most commonly useful
location keys (terminals) in vim's little
language.

To keep the information on the slides
manageable, we're going to cheat with this
all caps convention that assumes there are
additional rules here not shown (in table).

command -> cursor_to | operation

cursor_to -> LOCATION

operation -> verb cursor_to

verb -> change | delete | yank

change -> 'c'

delete -> 'd'

yank -> 'y'

Operations carry out actions on your text.

A command is either a cursor_to
motion OR an operation.

An operation is a verb
followed by a cursor_to.

A verb is either:
• Change - removes text, transitions to insert mode
• Delete - removes text
• Yank - copies text

command -> cursor_to | operation

cursor_to -> LOCATION

operation -> verb cursor_to

verb -> change | delete | yank

change -> 'c'

delete -> 'd'

yank -> 'y'

How would the grammar parse "c$"?
command

operation

verb cursor_to

change

'c'

end of line

'$'

"Change from cursor
to end of line."

command -> cursor_to | operation

cursor_to -> LOCATION

operation -> VERB cursor_to

Our grammar now has two high-level commands!

Verb Terminal

change c

delete d

yank y

Location Key

line below j

line above k

char left h

char right l

first char of line ^

last char of line $

next word w

previous word (back) b

end of next word e

next occurrence of word *

previous occurrence of word #

start of file gg

end of file G

command -> cursor_to | operation | line_operation

cursor_to -> LOCATION

operation -> VERB cursor_to

line_operation-> repeated_verb

repeated_verb -> delete delete |

change change |

yank yank

Line operations carry out a verb on a complete line.

A repeated_verb is either
a delete followed by a delete OR
a change followed by a change OR
a yank followed by a yank.

command -> cursor_to | operation | line_operation

cursor_to -> LOCATION

operation -> VERB cursor_to

line_operation -> repeated_verb

repeated_verb -> delete delete |

change change |

yank yank

How would the grammar parse "dd"?

command

line_operation

repeated_verb

delete delete

'd' 'd'

command -> cursor_to | operation | line_operation

cursor_to -> LOCATION

operation -> VERB cursor_to

line_operation -> REPEATED_VERB

Notice the language reuses and composes concepts...

An operation composes the concept of
moving your cursor with an action verb.

It's so common you want to delete or change a whole line
there's a convention of repeating a verb twice to do so.

The composition of rules gives you a combinatoric superpower.
The number of commands you can carry out is the number of is
roughly VERBS x LOCATIONS.

command -> cursor_to | operation | line_operation

cursor_to -> LOCATION | n_times LOCATION

operation -> VERB cursor_to | n_times VERB cursor_to

line_operation -> REPEATED_VERB | n_times REPEATED_VERB

n_times -> POSITIVE_INTEGER

You can repeat / "scale" these commands, too!

We'll look at how to form the grammar of a
positive integer out of terminal characters
soon. For now assume we can.

command -> cursor_to | operation | line_operation

cursor_to -> LOCATION | N_TIMES LOCATION

operation -> VERB cursor_to | N_TIMES VERB cursor_to

line_operation -> REPEATED_VERB | N_TIMES REPEATED_VERB

How would the grammar parse "3e"?

command

cursor_to

n_times location

'3'
end of
word

'e'

The command moves the cursor to the end of 3 words forward.

command -> cursor_to | operation | line_operation

cursor_to -> LOCATION | N_TIMES LOCATION

operation -> VERB cursor_to | N_TIMES VERB cursor_to

line_operation -> REPEATED_VERB | N_TIMES REPEATED_VERB

How would the grammar parse "d3e"?

command

operation

verb cursor_to

delete

'd'

n_times location

'3'
end of
word

'e'

The command is deletes from the cursor to
the 3rd end of word.

command -> cursor_to | operation | line_operation | to_insert_mode

cursor_to -> LOCATION | N_TIMES LOCATION

operation -> VERB cursor_to | N_TIMES VERB cursor_to

line_operation -> REPEATED_VERB | N_TIMES REPEATED_VERB

to_insert_mode -> insert | insert_below | append

insert -> 'i'

insert_below -> 'o'

append -> 'a'

Changing to Insert Mode

When you're ready to go into insert mode and start typing,
there are a few commonly used points to begin inserting
new text as shown to the left.

command -> cursor_to | operation | line_operation | TO_INSERT_MODE

cursor_to -> LOCATION | N_TIMES LOCATION

operation -> VERB cursor_to | N_TIMES VERB cursor_to

line_operation -> REPEATED_VERB | N_TIMES REPEATED_VERB

vim Grammar Cheat Sheet

To Insert Mode Key

insert i

insert new line below o

insert new line above O
(shift+o)

append after cursor a

Verb Key

change c

delete d

yank y

Location Key

line below j

line above k

char left h

char right l

first char of line ^

last char of line $

next word w

previous word (back) b

end of next word e

next occurrence of word *

previous occurrence of word #

start of file gg

end of file G

1. Try to express verbally what you want to accomplish

2. Then try and express that in the grammar by
substituting rules….

• "Move cursor to 5 lines below."

• "Change the entire line."

• "Delete from cursor to the start of the line."

