
© Kris Jordan 2019 - All Rights Reserved



The Road Ahead

• Last lecture we introduced a simple grammar
for vim's command language.

• When we parsed inputs from the grammar, 
each parsing resulted in a syntactical tree 
structure that can be represented digitally as a 
data structure.

• The algorithmic process any little language 
processor must take to transform an input 
string into a syntax tree is a multi-stage 
process shown to the right.

• The first step toward lexical analysis is 
processing a character stream. Today's focus 
on character iteration is the first step along 
the way. Soon you'll address scanning.

String Input

Lexical Analysis
"Scanning"

Character Stream

Syntactical Analysis
"Parsing"

Token Stream

Syntax Tree



class Main {
public static void main(String[] args) {

// How would you call jumpOutOfPlane from here?
}

private static void jumpOutOfPlane(Parachute p) {
System.out.println(p.getColor());

}
}

class Parachute {
private String color;

Parachute(String color) {
this.color = color;

}

String getColor() {
return this.color;

}
}

Warm-up question: pollev.com/compunc



On null, a source of many errors.

"I call it my billion-dollar mistake. It was the invention of the null reference in 1965. 

At that time, I was designing the first comprehensive type system for references in 
an object oriented language (ALGOL W). 

My goal was to ensure that all use of references should be absolutely safe, with 
checking performed automatically by the compiler. 

But I couldn't resist the temptation to put in a null reference, simply because it was 
so easy to implement. 

This has led to innumerable errors, vulnerabilities, and system crashes, which have 
probably caused a billion dollars of pain and damage in the last forty years." 

-Tony Hoare
(Also invented Quicksort in 1959.)

https://en.wikipedia.org/wiki/ALGOL_W


Consider null in Java...
• Conceptually, isn't it a little bit insane null is a valid value for any reference 

type?

You: "Ok, so I've got a method named jumpOutOfPlane and it requires a single object 
parameter of type Parachute to be called. How do you call it?"

Friend: "Easy. jumpOutOfPlane(null)"

You: "Uhh.. no.. what.."
Java: "YEP, that checks out! Here we goooo..."

• NullPointerExceptions only occur at runtime!
• How do you prevent NullPointerExceptions in a method like jumpOutOfPlane?



• To protect a codebase from nullPointerExceptions you wind up having three options:

1. Traditionally you have to guard accessed references with null checks. 
// This won't save you from a race condition in multithreaded code, though...

if (p == null) {
System.out.println("Why did it come to this...");

} else {
System.out.println(p.getColor());

}

2. Modern code bases will use Java 8's or Guava's Optional<T> type everywhere a null reference 
may be returned.
• Instead of ever assigning or returning null, the value Optional.empty() is returned which is an object.
• When you call a method that returns an Optional<T> you must still check a value is present. There's no 

escaping code to handle the two scenarios, but it is more explicit when an API is designed to optionally return a 
value.

3. Some code bases will use Java 8's @NonNull attribute and compiler option that does more to 
enforce strict null checking

Checking for null in Java



Rust has no null values*!

• In order to make null impossible, it means Rust code looks a lot like 
what very well engineered Java or C++ winds up looking like...

... and is strongly enforced by the compiler!

• Rust's Option<T> enumeration type is used anywhere you may have:

• Some actual value of type T or 
• None at all

Aside: One of the motivating reasons for choosing Rust for this course is if you apply the lessons you learn in Rust 
to the work you do in other languages like Java, then you'll write much better, safer code elsewhere, too.

* In the default, safe mode, which is where we'll be all semester. In unsafe Rust, there is null.



Here's a definition of Option<T>

enum Option<T> {
None,
Some(T)

}

• This defines an enumerated type (enum) Option that is generic for any type T 

• Option<T> has two variants: None or Some(T)
• This means every value of type Option<T> must be either Some(T) or None

• In Rust, each variant of an enum can store data associated with it!
• Some(T) is expressing the Some variant can hold a single value of type T
• You will learn more about enums in Chapter 10



Examples of Option<T> values

• Consider the two variables above.
• Both are of type Option<char> which you can read as:
"This variable a's type tells us its value is either Some character or None at all."

• To construct Option<T> with an actual value you wrap it in a Some(T)

• The code above is explicitly typed. Notice Some and None are namespaced
within the Option enum.

let a: Option<char> = Option::Some('a');
let b: Option<char> = Option::None;



Implicitly typed examples of Option<T>

• The previous code is exactly equivalent and just as type safe as above.

• Using the Option<T>, Some, and None types are so common in Rust they're 
imported automagically as part of the standard prelude.
• The same is true in Java. There's an implicit import java.lang.* in every file.

(i.e. java.lang.Math allows you to write Math.pow(2) anywhere in Java)

• In most cases Rust can deduce a variable's type to a single type by looking at its usage
• In cases where it cannot due to ambiguities, you will have to explicitly type your variables
• The type inference capabilities of modern languages like Rust, Swift, C#, TypeScript, and Kotlin are 

descendent of Hindley and Milner's 1973 method featured in the programming language ML

let a = Some('a');
let b = None;



PollEv.com/compunc - What is the output?

let a: Option<char> = Some('a');
let b: Option<char> = None;

if let Some(c) = a {
println!("{}", c);

}

if let Some(c) = b {
println!("{}", c);

} else {
println!("None");

}

if let None = b {
println!("None");

}



Aside: Destructuring Assignment in Python and (Java|Type)Script

Swap in Python:
a = 1

b = 2

a, b = b, a

print(a) // 2

Swap in modern JavaScript:
let a = 1;

let b = 2;

[a, b] = [b, a];

console.log(a); // 2

• If you can structure variable names on the 
LEFT hand side of the assignment 
operator in a structure that is aligned with 
the RIGHT hand side's structure...

• Then, values from the right hand side will 
be assigned to the corresponding 
variables on the left hand side.

• Destructuring assignment is even more 
capable than these examples 
• You can destructure assign object properties!



Destructuring Assignment with if let (1/4)

• How do you access the data stored in a 
Some<T> value?

• You must do some kind of conditional check 
(if-let, while-let, or match) to ensure 
you actually have Some value.

• Since any time you're doing the work of 
checking for a particular kind of enum
variant, you probably also want the value 
stored, Rust combines both steps via 
conditional destructured assignment.

let a: Option<char> = Some('a');

if let Some(c) = a {
println!("{}", c);

} else {
println!("None");

}



Destructuring Assignment with if let (2/4)

let a: Option<char> = Some('a');

if let Some(c) = a {
println!("{}", c);

} else {
println!("None");

}

"If the following let statement is a 
valid destructuring assignment:

let Some(c) = a

Then, carry out that destructuring
assignment and continue into the 
then block.

Otherwise, jump to the else 
block."

This is the pattern the conditional 
is testing to see if there's a match.

This is the value 
being tested to 
see if it matches 
the pattern.

The identifier c is a variable being 
declared inside the then-block 
whose value is assigned via 
destructuring a if there's a match.



Destructuring Assignment with if let (3/4)

let a: Option<char> = Some('a');

if let Some(c) = Some('a') {
println!("{}", c);

} else {
println!("None");

}

Imagine substituting a in the if-
let with its actual value as if we 
were interpreting the code...

let Some(c) = Some('a')

Is this a valid destructuring
assignment? 

Yes! So, then, 'a' is assigned to 
the variable c in the then block via 
destructuring.



Destructuring Assignment with if let (4/4)

let a: Option<char> = None;

if let Some(c) = a {
println!("{}", c);

} else {
println!("None");

}

Alternatively, a's value could be None.

In which case, if you substitute a in the 
if-let, your let statement looks like:

let Some(c) = None

Is this a valid destructuring assignment? 
No! The structure on both sides of the 
assignment statement must correspond 
with one another.

So execution jumps to the else block.



No Googling! PollEv.com/compunc

Explain an iterator in ONE sentence!

• Speed round, you have exactly 2 minutes to respond.

• No Googling! Chat with your neighbors.

• GO!



Iterating through a str's Characters

• Iterators are Rust's preferred idiom for collection traversals

• Rust Iterators have a method named next
• It returns an Option<T> where T is the type of Item the collection contains

• The str type's chars() method produces an iterator of chars
• Thus, calling next() on it produces values of type Option<char>

• Since an iterator's state is mutated every time you call next(), 
iterators must be declared as mutable variables.



// Declare a string variable
let a_str = "ab";

// Establish an iterator
let mut itr = a_str.chars();

if let Some(c) = itr.next() {
println!("a: {}", c);

}

if let Some(c) = itr.next() {
println!("b: {}", c);

}

if let Some(c) = itr.next() {
println!("c: {}", c);

} else {
println!("no c!");

}

• Convince yourself the output of 
the code listing to the right is:

a: a
b: b
no c!

• Do you notice the pattern here? 
You want to keep taking Some 
character until there's None left.

Manually iterating 
through a str's chars



Introducing while let iteration

• Using a while let instead of an 
if let performs the same logical 
steps as before 

• Like any other while statement, 
though, when the end of the block 
is encountered the conditional is 
checked again

// Declare a string variable
let a_str = "abcdefg";

// Establish an iterator
let mut itr = a_str.chars();

// Iterate through its values
while let Some(c) = itr.next() {

println!("{}", c);
}



Preview:
The match Statement

• In C, Java, JavaScript, etc. you know the 
switch statement.

• In Rust you'll use match

• The example right is the most basic form 
of match
• It has 2 pattern matching "arms" trying to 

match c against the character 'a' and the 
character 'e

• It has a default arm denoted with the _ for 
any case where no patterns matched.

• Unless your pattern matching arms are 
exhaustive of every possible pattern, you 
must have a default arm.

let a_str = "abcde";
let mut itr = a_str.chars();

while let Some(c) = itr.next() {
match c {

'a' => {
println!("a");

}
'e' => {

println!("e");
}
_ => {

println!("not a nor e");
}

}
}


