
© Kris Jordan 2019 - All Rights Reserved

Draw the state of memory of the Java program below when it
arrives at the "breakpoint" comment.

public class ABCs {
public static void main(String[] args) {

int a = 0;
int b = a;
b = 1;

int[] e = { 2 };
int[] f = e;
f[0] = 3;
// breakpoint

}
}

Environment Diagrams

• In this course you will draw environment diagrams to represent a
program's state in memory
• These diagrams are a powerful tool to help you intuitively understand scopes,

values, references, and the stack versus the heap

• You can apply them to any language however each language will have its
own rules regarding what's possible (more precisely called semantics)

• A key distinction between systems programming languages and
applications languages is how "close to memory" your code can operate
• In systems languages like C, C++, and Rust you have direct access to memory

• In applications languages there are abstractions sitting between your code's
variables and memory that limit what you're able to express

Aside: Stack versus Heap in Java and JavaScript

• The values of variables holding value-
type data live on the call stack
• The local variables of each function call or

method call reside in their own frame

• The values of variables holding
reference-type data lives on the heap
• Local variables "storing" an object or array

are actually pointers to locations on the
heap

• Every time you use the new keyword in
Java you're allocating storage space on the
heap

Important Semantics of Common Application Languages

• Many popular applications languages (including Java, JavaScript, Python)
share similar semantics around value and reference types

• There are ideas you cannot express in an applications programming language
because it has semantic abstractions between your variables and memory
• For example, if you declare a value type variable in Java the only way to change its

value is to assign to the variable directly.

• Why? It is not possible for one variable on the stack to reference another via a pointer.
• All references/pointers are directed toward heap locations.

• Heap objects remain present for at least as long as there is a way to reach
them from the stack by following pointers
• Some amount of time after a heap object becomes impossible to reach from the stack,

the language runtime's garbage collector will reclaim the memory.

fn main() {
let a: u8 = 1;
a_fun(a);

}

fn a_fun(a: u8) {
let b: u8 = 2;
let c: u8 = 3;
println!("{}", a + b + c);
// BREAKPOINT

}

Environment Diagrams in Rust

main

Each function call has its own stack frame for local variables.

Stack Heap

fn main() {
let a: u8 = 1;
a_fun(a);

}

fn a_fun(a: u8) {
let b: u8 = 2;
let c: u8 = 3;
println!("{}", a + b + c);
// BREAKPOINT

}

Environment Diagrams:

Variables declarations added to the current frame.

main

Stack Heap

1a

fn main() {
let a: u8 = 1;
a_fun(a);

}

fn a_fun(a: u8) {
let b: u8 = 2;
let c: u8 = 3;
println!("{}", a + b + c);
// BREAKPOINT

}

Environment Diagrams:

Function calls allocate a new frame on the stack.

main

Stack Heap

1a

a_fun

In this instance the frame size is larger because looking ahead toward a_fun you can see it has a parameter
and 2 local variables so we'll need room for additional variables in the frame.

fn main() {
let a: u8 = 1;
a_fun(a);

}

fn a_fun(a: u8) {
let b: u8 = 2;
let c: u8 = 3;
println!("{}", a + b + c);
// BREAKPOINT

}

Environment Diagrams:

Function calls drop a bookmark to return to and jump into function.

main

Stack Heap

1a

a_fun

Notice it's just a coincidence a_fun's parameter name is the same as the variable it was given in the
function call. These are two separate, unrelated variables in memory. Either could have a different name.

1a

fn main() {
let a: u8 = 1;
a_fun(a);

}

fn a_fun(a: u8) {
let b: u8 = 2;
let c: u8 = 3;
println!("{}", a + b + c);
// BREAKPOINT

}

Environment Diagrams:

More variables are declared and initialized.

main

Stack Heap

1a

a_fun

In reality these steps would happen one at a time, we've fast forwarded here for brevity.

1a

2b

3c

fn main() {
let a: u8 = 1;
a_fun(a);

}

fn a_fun(a: u8) {
let b: u8 = 2;
let c: u8 = 3;
println!("{}", a + b + c);
// BREAKPOINT

}

Environment Diagrams:

Variable accesses look up values in the current scope.

main

Stack Heap

1a

a_fun

Note that the two a variables currently on the stack could easily have different values.

1a

2b

3c

fn main() {
let a: u8 = 1;
a_fun(a);

}

fn a_fun(a: u8) {
let b: u8 = 2;
let c: u8 = 3;
println!("{}", a + b + c);
// BREAKPOINT

}

Environment Diagrams:

When the breakpoint is reached the stack and heap are as so...

main

Stack Heap

1a

a_fun

All of this behaves just the same as it would in an applications language like Java. No surprises here.
We're not going to digress into the println! macro for now. Lots of wonderful magic is happening there.

1a

2b

3c

Environment Diagrams with References

fn main() {
let a: u8 = 0;
let b: u8 = 1;
let p: &u8 = &b;
println!("{:p}", p);
println!("{}", *p);
// BREAK

}

Environment Diagrams with References:

Main starts empty...

main

Stack Heap

fn main() {
let a: u8 = 0;
let b: u8 = 1;
let p: &u8 = &b;
println!("{:p}", p);
println!("{}", *p);
// BREAK

}

Environment Diagrams with References:

Variable declarations and initializations add entries to current frame.

main

Stack Heap

0a

1b

Nothing new and surprising, yet...

fn main() {
let a: u8 = 0;
let b: u8 = 1;
let p: &u8 = &b;
println!("{:p}", p);
println!("{}", *p);
// BREAK

}

Environment Diagrams with References:

References types are assigned pointers to locations in memory.

main

Stack Heap

0a

1b

Notice we have a pointer from one location on the stack to another! This isn't possible in Java.

p

Breaking down a reference assignment...

• What does the address of operator actually resolve to?
• The memory address of a variable... aka a pointer.

• A pointer is a memory address. We draw an arrow only as a visualization.

let p: &u8 = &b;

The type is a reference to
an unsigned 8-bit integer.

The value assigned is the
address of the variable b.

fn main() {
let a: u8 = 0;
let b: u8 = 1;
let p: &u8 = &b;
println!("{:p}", p);
println!("{}", *p);
// BREAK

}

Reality looks a little bit more like this....

...

Memory

There are still many oversimplifications present in this representation, however, it illustrates the main concept
you need to know: a pointer is just an address of some place in memory.

We'll soon discuss slices and "smart pointers" in more detail. They expand on the idea of a simple pointer and
store additional information about the memory being pointed to.

...

0x91

0x92

0x93

...

0x92

1

0

...

p

b

a

Notice p stores the
address of b in memory.

fn main() {
let a: u8 = 0;
let b: u8 = 1;
let p: &u8 = &b;
println!("{:p}", p);
println!("{}", *p);
// BREAK

}

Environment Diagrams with References:

You can print the address of a reference type using a {:p} placeholder.

main

Stack Heap

0a

1b

Notice that p itself is of type &u8 which is a reference type holding the address of another location.

p

fn main() {
let a: u8 = 0;
let b: u8 = 1;
let p: &u8 = &b;
println!("{:p}", p);
println!("{}", *p);
// BREAK

}

Environment Diagrams with References:

You can dereference a reference type with a *.
This means: "follow the pointer"

main

Stack Heap

0a

1b

When you dereference a pointer you're accessing the value stored in the address the pointer holds.

There are common situations where Rust will automatically dereference on your behalf. You can always do it explicitly as
shown here, though. While you're getting comfortable with the concept we encourage being explicit.

p

Environment Diagrams with
Mutable Variables and Mutable References

fn main() {
let mut a: u8 = 0;
let mut b: u8 = 1;

let mut p: &mut u8 = &mut a;
*p = 10;

p = &mut b;
*p = 11;

println!("a:{} - b:{}", a, b);
// BREAK

}

PollEv.com/compunc – what is the
output of this code listing?

Environment Diagrams with Mutable References:

A variable's contents are mutable only if declared mut.

main

Stack Heap

0mut a

1mut b

fn main() {
let mut a: u8 = 0;
let mut b: u8 = 1;

let mut p: &mut u8 = &mut a;
*p = 10;

p = &mut b;
*p = 11;

println!("a:{} - b:{}", a, b);
// BREAK

}

Why all this concern over mutability?

In single-threaded programming, actively avoiding
mutability makes it easier to reason about code.

In multi-threaded programming, mutability is the
root cause of almost every problem you'll encounter.

Environment Diagrams with Mutable References:

If you'd like for a reference to be able to mutate its referent, it must be
assigned an &mut pointer.

main

Stack Heap

0mut a

1mut b

fn main() {
let mut a: u8 = 0;
let mut b: u8 = 1;

let mut p: &mut u8 = &mut a;
*p = 10;

p = &mut b;
*p = 11;

println!("a:{} - b:{}", a, b);
// BREAK

}

We will use dashed lines to indicate
mutable references.

There are three different meanings
of mut in this line. Let's break them
down…

mut p

Different meanings of mut

• The mut keyword is info the compiler uses to ensure safety guarantees.

• Once the program compiles, mut has no cost in space or time.

let mut p: &mut u8 = &mut a;

The type is a reference to a u8
value that can be mutated by
dereferencing.

A special variant of the address of operator
returns the address of a while letting the
compiler know it's a mutable reference.

The compiler will ensure a was declared
mutable.

When you declare a variable as
mutable you can reassign that
variable's value. Here we're
declaring p as a mutable
variable whose type is a
mutable reference. Thus, it can
be reassigned in the future.

Environment Diagrams with Mutable References:

Assigning to a mutable reference changes the referent value.

main

Stack Heap

10mut a

1mut b

fn main() {
let mut a: u8 = 0;
let mut b: u8 = 1;

let mut p: &mut u8 = &mut a;
*p = 10;

p = &mut b;
*p = 11;

println!("a:{} - b:{}", a, b);
// BREAK

}

You must dereference the pointer in this scenario.

mut p

Environment Diagrams with Mutable References:

Reassigning a reference variable is possible if it was declared mut.

main

Stack Heap

10mut a

1mut b

fn main() {
let mut a: u8 = 0;
let mut b: u8 = 1;

let mut p: &mut u8 = &mut a;
*p = 10;

p = &mut b;
*p = 11;

println!("a:{} - b:{}", a, b);
// BREAK

}

If we had not declared p as a mut variable, this
line would have been invalid.

Note: idiomatic Rust would prefer redeclaring p
and not declaring it mutable. We're doing it this
way here for illustrative purposes.

mut p

Environment Diagrams with Mutable References:

Assigning to a mutable reference changes the referent value.

main

Stack Heap

10mut a

11mut b

fn main() {
let mut a: u8 = 0;
let mut b: u8 = 1;

let mut p: &mut u8 = &mut a;
*p = 10;

p = &mut b;
*p = 11;

println!("a:{} - b:{}", a, b);
// BREAK

}

If we had not declared p as a mut variable, this
line would have been invalid.

Note: idiomatic Rust would prefer redeclaring p
and not declaring it mutable. We're doing it this
way here for illustrative purposes.

mut p

