
© Kris Jordan 2019 - All Rights Reserved

Before lecture: Start VM and pull 590 materials from upstream.
Then…
$ sudo apt-get install wamerican
$ ln -s /usr/share/dict/american-english $HOME/dict

Input 1 + 2 * 1 0" "

Num(1) Op(+) Num(2) Op(*) Num(10)

Op(+)

Num(1) Op(*)

Num(2) Num(10)

Lexical Analysis
a.k.a. Scanning/Tokenization

Syntax Analysis
a.k.a. Parsing

Language Processor Front-end Overview

Lexeme

Token

Parse Tree

An input string is provided with access to its individual
characters.

A tokenizer identifies lexemes in the input string and
yields tokens while filtering out spaces and comments.

A parser constructs a parse tree data structure out of
the tokens produced during lexical analysis.

Why separate lexical analysis from syntax analysis?
Generally, both stages can be implemented simpler
and more elegantly if their concerns are separated.

Lexical Analysis

• Today's focus is lexical analysis:

1. What are the key concepts and terms to understand?

2. How can you specify the textual patterns/rules of lexemes?

3. Given a specification, how do you approach tokenization?

Key Terms

• Lexeme - one or more characters in a string with a single unit of meaning
• There are two number lexemes in the string "40 20"
• Think of these as the words of our language

• Pattern - specification of the form or rules of a lexeme
• Regular expressions like (1|2|4)(0)* can specify the patterns lexemes must match. You'll

learn the details of these patterns this week.

• Token - a value in a program that has the token's type and often some associated
data. Examples:
• Number(40.0)
• Number(20.0)
• Op('+')
• LeftParen, RightParen

Regular Expressions ("regex")

• A regular expression is a notation for specifying textual patterns
• In language frontends they are used to specify lexeme patterns
• Have everyday utility in searching for text in files and verifying user inputs

• Regular Expressions describe a Regular Grammar
• In COMP455 you will explore the theoretical basis of regular grammars
• Our goal is pragmatic: what are their rules and how can we apply them?

• A Regular Grammar is more constrained than the next kind of grammar we
will find applications in (Context-Free Grammar)
• The Chomsky Hierarchy (1956) identifies the broad classes of grammars according to

their expressive power.

• The simplest regular expression "operator" is concatenation

• Any two regular expressions, r1 and r2, can be concatenated to r1r2
• In practical notations, as we'll use and shown above, concatenation is implicit.
• In formal notations you may see the concatenation operator explicitly represented with an underscore or dot,

for example r1·r2

• Suppose r1 is "c" and r2 is "o", we can concatenate these two regular expressions to form regular
expression r' as "co"
• Further, if r3 is "m" and r4 is "p", you could concatenate r'r3r4 to form re "comp"

• The way to read concatenation is "and then"
• re can be read as "c" and then "o" and then "m" and then "p"

• This operator should feel natural and obvious.
• When you search a web page with Ctrl+F it is the only operator you have available.

Regular Expressions... pragmatically

Operation: Concatenation

Exercise: egrep'ing scrabble cheat codes

• Install a file that contains a dictionary of words using the operating system's package manager,
(think: "app store")

$ sudo apt-get install wamerican
The wamerican package installs a word dictionary to the file /usr/share/dict/american-english

• Create a "symbolic link" to the dictionary file from your $HOME/dict

$ ln -s /usr/share/dict/american-english $HOME/dict
• After the command above, $HOME/dict is an alias for the American English dictionary file you just installed.

We're just making a shortcut to avoid typing that long filename.

• Let's use the command egrep to search for patterns in the dictionary file using regular
expressions (the r and e in egrep)
General Usage: egrep <flags> '<regular expression>' <file>

Example: $ egrep --color 'zz' ~/dict

• Union is the more formal name for alternation because you are forming a grammar that is the
union of two simpler grammars.

• Any two regular expressions, r1 and r2, can be alternated with r1|r2
• The vertical bar symbol is effectively universal

• Suppose r1 is "c" and r2 is "o", we can alternate these two regular expressions to form regular
expression r' as "c|o"
• Further, if r3 is "m" and r4 is "p", you could form the alternation r'|r3|r4 to form re "c|o|m|p"

• The way to read alternation is "or"
• re can be read as "c" or "o" or "m" or "p"
• re thus specifies the pattern of a four character lexeme equal to "comp"

• This operator should feel natural.
• When you search a web page with Ctrl+F it is the only operator you have available.

Regular Expressions... pragmatically

Operation: Alternation via |

Exercise: egrep part 2

$ egrep --color '(zz)|(bb)' ~/dict

Regular Expressions Compose by Combining
Operators (1/2)

• You now know two operators, how can you compose them?

• Just like in arithmetic expressions you can group terms with parenthesis to
make the order of operations explicit. Compare the following two regular
expressions:

(comp)|(sci)
("c" and then "o" and then "m" and then "p") OR ("s" and then "c" and then "i")
matches either "comp" or "sci"

(com)(p|s)(ci)
("c" and then "o" and then "m") and then ("p" OR "s") and then ("c" and then "i")
matches "com" and then "p" or "s" and then "ci", so either "compci" or "comsci"

• Closure is the more formal name for zero or more repetitions.

• Any regular expression r can be repeated zero or more times with r*
• The asterisk symbol, called the Kleene Star after its inventor, is universal.

• Suppose r is "c", we can repeat r zero or more times with "c*"

• The way to read the star is "is repeated zero or more times"
• r can be read as "c" is repeated zero or more times

• This operator is strange in isolation but powerful in composition...

Regular Expressions... pragmatically

Operation: Zero or More Repetitions via *

Composing Regular Expressions (2/2)
• When would it ever be valuable to specify zero or more repetitions?

• Suppose you specify a regular expression to match any single digit:

rdigit = '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'

• Now, you could try specify a whole number as combinations of digits using only concatenation and alternation:

rwhole = rdigit | (rdigit rdigit)| (rdigit rdigit rdigit) | (rdigit rdigit rdigit rdigit)

• But that only describes whole numbers made of 1 to 4 digits! This is where the Kleene star comes to the rescue:

rwhole = rdigit | (rdigit rdigit*)

• A whole number is "a digit or (a digit and then zero or more repetitions of a digit)"

• Breaking the rules of a regular expressions into regular definitions helps their legibility. Compare with:
rwhole = ('0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9') | (('0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9') ('0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9')*)

Exercise: egrep part 3

$ egrep --color 'zo(o*)' ~/dict

The Fundamental Operators of Regular Expressions

The three regular expression operators you need to know are:

1. Any two regular expressions, r1 and r2, can be concatenated as r1r2
"r1 AND THEN r2"

2. Any two regular expressions, r1 and r2, can be alternated as r1|r2
"r1 OR r2"

3. Any regular expression r can be repeated zero or more times with r*
"r is repeated zero or more times"

Composition is the Very Big Deal: When you apply any of these operators you are composing another
regular expression that can further be composed with other regular expressions.

You will learn additional regular expression operators that help you write patterns more succinctly. They
are not fundamental. All other regex operators are defined in terms of the three operators above.

Regular Definitions

• A regular definition is a conventional notation to break down regular expressions
into named subexpressions
• Just like we did when forming a regular expression for whole numbers!

d1 -> r1
d2 -> r2
...
dn -> rn

• Regular definitions are non-recursive. This means each rn is limited to:
1. Terminal Characters, or
2. Any previously defined non-terminal definitions (formally, {d1...dn-1})

• The next class of grammar we study (context-free) does not have restriction #2.

A Tokenizer Finds Lexemes and Yields Tokens

• It does so by iterating through the characters of an input string one-by-one

• To simplify the implementation of a tokenizer it is often helpful to be able to
"peek" ahead of the current character by one additional character without
actually taking it. Why is this helpful?

• When you start looking for the next lexeme you can peek ahead one character
to know what type of lexeme it should be and jump to a subroutine to take it.
• Variable names in most programming languages can't start with a number. This is so the

language's tokenizer can peek at the first character of what's next and decide if it's going to
be a number or not.

• If you did not know you reached the end of a lexeme until you took the next
character after the lexeme you'd need to do gymnastics to "give it back" or use
additional state to keep track of what it was.

Taking and Peeking in Rust

• Iterators can produce Peekable iterators via the peekable method:

let input = "abc"
let mut chars = input.chars().peekable();

• A Peekable iterator gives you a peek method:
• Like next, it returns an Option<T>. Unlike next, peek is idempotent and does not advance

the iterator.
if let Some(c) = chars.peek() { /* … */ }

• When you are peeking, it's important to always take the next item eventually.
• Just as with a normal iterator, the next method takes the next item in the iterator, advances it

forward, and returns an Option<T>.
• If you just peeked the next item and know you want to take it, you can "unwrap" the Option

rather than testing it again with an if-let.
chars.next().unwrap()

Case Study: The lol digit language

• digit -> '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'

• out_louds -> ('o' | 'l')

• lol -> 'l' 'o' 'l' out_louds*

• tokens -> lol | digit

Follow-along

• Let's explore the code in 590-material-<you>/lecture/05-tokenization

• The demo app we're working on is ex1_loldigit

• The purpose of this app is to tokenize an input string using a simpler
architecture (read: less sophisticated and with shortcomings) than the
organization of thdc.
• It demos the practices of peeking ahead at characters and taking them

• It also demos matching characters using alternation

Taking alternations and zero or more
repetitions of characters...

// TODO: ('o'|'l')* -> Take zero or more repetitions of 'o' or 'l'
while let Some(c) = chars.peek() {

match c {
'o' | 'l' => lolstring.push(chars.next().unwrap()),
_ => break // leave whatever character is next alone

}
}

• Notice we're peeking in the event there are 0 repetitions it's OK because
we're not taking the next input

• In the first arm of the match, we're accepting either 'o' or 'l' and we're
then taking that character with next() and pushing it onto our lolstring.

More vim Locations

Location Key

jump to <regex> /<regex><enter>

next match of last <regex> n

previous match of <regex> N

Go to line #<N> above cursor <N>gg

Go to line #<N> below cursor <N>G

Jump to the <N>% line of file <N>%

Find next char <C> f<C>

Find previous char <C> F<C>

To next <C>, stopping before it t<C>

To previous <C>, stop before it T<C>

Regular Expression Search

Locations in File

Char Search Current Line

98% of the time you'll only use concatenation.

For the other 2%, you can use the Kleene Star * directly,
but you must escape parentheses and alternations, i.e.
b(a|ee*) is /b\(a\|ee*\)

