
© Kris Jordan 2019 - All Rights Reserved

Before lecture: Start VM and pull 590 materials from upstream.
Then…
$ cd comp590-material-<you>
$ git pull upstream master
$ cd comp590-material-<you>/lecture/06-regex

Regular Expressions - Additional Operators

• The three operators discussed last lecture are fundamental:
• Concatenation
• Alternation (Union)
• Zero or More Repetitions (Closure / Kleene Star)

• There are very common real world patterns you will want to specify
that are tedious using only those three operators.

• Most regex implementations offer additional operators for improved
ergonomics. The ones we'll see today are built into egrep, Java,
JavaScript, Python, etc.

Regex Character Classes - Character Lists (1/3)

• What regular expression matches single characters 'a' through 'f'?

r -> a | b | c | d | e | f

• Character classes allow you to express the above pattern as:

r -> [abcdef]

• When you need to match a specific set of individual characters, this is
commonly helpful. For example, punctuations:

r -> [,.:;]

Regex Character Classes - Character Ranges (2/3)

• What regular expression matches single characters 'a' through 'z'?
r -> a | b | c | d | e | f | ... | x | y | z

• Character classes allow you to express the above pattern as:

r -> [a-z]

• How does a regex library know the range? It's based on ASCII ordinal numbers for
each char. ASCII code for a is 97 and z is 122, so it accepts chars whose ASCII
ordinals are between those two numbers.

• You can combine multiple ranges in singular regular expressions. For
example, valid hexadecimal digits which are case insensitive:
r -> [a-fA-F0-9]

Regex Character Classes - Escaping (3/3)

• You can directly capture *'s, ()'s, and |'s in character classes

r -> [*()|]

• Why? The square brackets signify "treat these characters as character
literals."

• You usually need to escape the characters [] and - to use them inside a
character class.
• How regex implementations handle escaping inside of character classes varies.

• No point in memorizing, just search references when needed.

Hands-on: Find Pairs of Digits on CS Faculty Page

• At the start of lecture you should have:
$ cd comp590-material-<you>
$ git pull upstream master
$ cd comp590-material-<you>/lecture/06-regex

• In today's lecture directory there is a file named `cs-faculty`

• Using egrep, find all pair of digits based on the regular definition below. You should express this using character
class ranges as just shown on the previous page:

digit -> 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
digit_pair -> digit digit

$ egrep --color 'regular expression' cs-faculty

• Check in on PollEv.com/compunc with your regular expression.

Aside: Why egrep vs grep?

• The classic regular expression search command is grep.

• Where does the name grep come from?
• Remember that non-visual editor named `ed`?
• In ed you can globally search for regular expressions and print matches: g/<re>/p

• Notice p character for the print command in ed is the same as in dc.
• It's still a convention! Ctrl+p or Command+p on windows/mac is the print shortcut.

• Why not use grep? The original regular expression syntax required escaping common operators
like |, (, and) with \'s. So the pattern (a|b) in grep is \(a\|b\)
• This is how you still have to specify them using vim's regex features, unfortunately.

• egrep's regular expression syntax is the same as most modern programming languages' and
how we'll present regular expressions in this course.
• It's much more pleasant to work with.
• Trivia: the e in egrep is from its origin as the "extended regular expression" mode of grep: grep –E

Aside - matching Character Ranges in Rust

let input = "abcDEfghi;123";
println!("input: {}", input);
let mut some_chars = input.chars();
while let Some(c) = some_chars.next() {

match c {
'a' | 'e' | 'i' | 'o' | 'u' => {

println!("vowel: {}", c);
}
'A'...'Z' => {

println!("capital: {}", c);
}
'a'...'z' => {

println!("lowercase: {}", c);
}
_ => {

println!("other: {}", c);
}

}
}

input: abcDEfghi;123
vowel: a
lowercase: b
lowercase: c
capital: D
capital: E
lowercase: f
lowercase: g
lowercase: h
vowel: i
other: ;
other: 1
other: 2
other: 3

Not only can you alternate patterns in Rust's match statements, you can match
character ranges with …, too!

When a subject matches multiple
patterns, the first match wins.

Here's the output to the code left:

Regex Repetitions - N to M repetitions

• Often you will want a pattern matched between a ranged number of times

d2-4 -> r r | r r r | r r r r

• The {N,M} operator provides N to M repetitions semantics

d2 -> r{2,4}

• For at most M repetitions, 0 inclusive, you can leave off the N:

d<=M -> r{,M}

• For at least N repetitions, you can leave off the M

d>=N -> r{N,}

Regex Repetitions - Exactly N repetitions

• Often you will want a pattern matched a specific number of times

d5 -> r r r r r

• You could achieve this with N to M repetitions, but it's redundant:

d5 -> r{5,5}

• The {N} operator provides N repetitions semantics

d5 -> r{5}

Hands-on: Find Phone Numbers on CS Faculty Page

• Using egrep, find all lines containing a phone number.

$ egrep --color 'regular expression' cs-faculty

• Check in on PollEv.com/compunc with your regular expression.

Done? GOLF! Can you think of a way to specify the pattern in fewer
characters?

Regex Repetitions - One or More Repetitions

• Often you will want at least one of some pattern

d -> r r*

• Using the N to M Repetitions operator, you could as:

d -> r{1,}

• This is so commonly useful, there's a special + operator for it:

d-> r+

Regex Repetitions - Zero or One - "Optional"

• Often you will want at most one of some pattern

d -> r | ε

• The empty string is ε and it matches against nothing.

• Using the N to M Repetitions operator, you could as:

d -> r{0,1}

• This is so commonly useful, there's a special ? operator for it:

d-> r?

Regular Expression Operator Precedence

Highest

1. Repetitions (left binding, unary operators)
• *
• +
• ?
• {N,M}'s

2. Concatenation

3. | Alternations

Lowest

VIM 201

• More VIM locations (introduced last lecture, but let's demo)

• Text Objects

• Registers

• Macros

• Visual Mode

More vim Locations

Location Key

jump to <regex> /<regex><enter>

next match of last <regex> n

previous match of <regex> N

Go to line #<N> above cursor <N>gg

Go to line #<N> below cursor <N>G

Jump to the <N>% line of file <N>%

Find next char <C> f<C>

Find previous char <C> F<C>

To next <C>, stopping before it t<C>

To previous <C>, stop before it T<C>

Regular Expression Search

Locations in File

Char Search Current Line

98% of the time you'll only use concatenation.

For the other 2%, you can use the Kleene Star * directly,
but you must escape parentheses and alternations, i.e.
b(a|ee*) is /b\(a\|ee*\)

command -> CURSOR_TO | operation | LINE_OPERATION | TO_INSERT_MODE

operation -> N_TIMES? VERB CURSOR_TO | VERB text_object

text_object -> (inside | around) object

inside -> 'i'

around -> 'a'

object -> surrounding | word

surrounding -> '(' | ')' | '[' | ']' | '{' | '}' | '"'

word -> 'w'

vim Grammar - Text Objects

Text Object Operation Examples

"Change Inside Parentheses"
Before: foo(1, 2)
Command: ci)
After: foo() (in insert mode)

"Change Around Parentheses"
Before: foo(1, 2)

Command: ca)

After: foo (in insert mode)

Vim's Registers - Variables that Hold Text

• When you carry out an action, the text under the operation is put into a register
• In many old school unix programs (including dc!) a "register" is just a variable whose name is limited to a single character.
• The only thing it shares in common with the CPU idea of a register is that you have a finite number of them.

• You address registers with the double quote "
• "a is register a
• "b is register b
• "" is register " and the default register

• When you yank, change, or delete without a register the text goes in the default register "

• To place the text under the operation into a specific register, just like variable assignment in programming,
you first specify the register first then what follows:

• "ay$ - Assign to register a the yanked text to the end of the line. (copy)
• "bd$ - Assign to register b the text deleted to the end of the line. (cut)
• "zc$ - Assign to register z the text deleted when changing to the end of the line. (cut)
• "ap – Paste the contents of register a.

command -> CURSOR_TO | operation | LINE_OPERATION | TO_INSERT_MODE | paste

operation -> assign_to_register (N_TIMES? VERB CURSOR_TO | VERB TEXT_OBJECT)

paste -> read_from_register 'p'

assign_to_register -> register

read_from_register -> register

register -> default_register | '"' register_name

default_register -> ε

register_name -> [a-z]

vim Grammar - Registers

vim Golf – Get rid of the next fax number line

• Starting from the top of the file, what is the fewest number of
keystrokes you can think of to get rid of the first fax line?

• Start your cursor in the top left corner: gg

• Respond with your keys on PollEv.com/compunc

vim Macros
Record and Replay strings of commands
• To begin recording a vim macro, press the q key followed by a register name. For

example:
• qa – begin recording a macro in the a register
• Notice the status bar tells you "recording @a"

• Then, enter your commands as you normally would.

• To stop recording a macro, press the q key again.

• To replay a macro, press the @ symbol followed by the macro name. For example:
• @a – relays the macro in register a

• Are these the same registers as what we cut and copy to? YES!!!
• You can paste your macro into the document!
• You can also write your macro in your document and then copy it to a register for use as a macro!

command_or_macro -> command | record_macro

command -> CURSOR_TO | OPERATION | … | replay_macro

record_macro -> 'q' register_name command* 'q'

replay_macro -> N_TIMES? ('@' register_name | replay_macro_again)

replay_macro_again -> '@' '@'

register_name -> [a-z]

vim Grammar - Macros

We now have a construct in our grammar that
lets us compose commands together and allows

us to define our own compound commands!

Composition is a superpower of languages.

vim Macro Practice – Get rid of all fax number lines

• Undo any changes made to the phone-numbers file with 'u'

• Return back to the top of the file: gg

• Record a macro in register f (fax): qfjddq

• Replay the macro in register f 30 times over: 30@f

• Replay the last macro a few more times: @@, @@

vim Macro Practice in phone-numbers

Remove the parenthetical text
after each phone number

Surround the first set of
numbers in parenthesis

Surround the last set of
numbers in parenthesis

Record 3 macros and then
replay them all in a 4th macro.

vim Visual Mode 101
Like clicking and dragging your mouse around.

• v – Transition to visual mode. Select using location_to commands.
• to_register? c – change
• to_register? y – yank (copy)
• to_register? d – delete (cut)

• Shift+v – Transition to visual line mode.
• Verbs same as above
• > - Indent
• < - Unindent

• Control+v – Transition to visual block mode.
• Shift+i – Insert in front of block.

• Comment out block of code: Ctrl+v j j j Shift+i // Ctrl+[
• Shift+a – Insert after block

vim - A Few More Useful Keys in Normal Mode

• x - Delete the character under the cursor

• <Ctrl>+A – Increase the number under the cursor by 1

• ~ - Toggle the case of the letter under the cursor

• r<char> - Replace the character under the cursor and stay in normal mode

• shift+J - Join the next line onto the end of the current line.

• Ctrl+o - Open the file explorer (this is a custom plugin on the VM called NERDTree and will not exist in all vim
editors you use)

• ; - Repeat your last find (f<char>) or to next (t<char) location_to

