
© Kris Jordan 2019 - All Rights Reserved

Before lecture: Start VM and pull 590 materials from upstream.
Then…
$ cd 590-material-<you>
$ git pull upstream master
$ cd 590-material-<you>/lecture/<today>

Heap Values in Rust with Box<T>

• How can any stack value in Rust be
moved to the heap? By boxing it.

• The Box<T> type allows you to
designate a value as a pointer to
its location on the heap.

• Unlike in C/Java, a Box<T> can
never be null.

• Unlike in C, the allocation and
freeing of the heap memory is
handled by the Box.

fn main() {
let a: char = 'a';
let a_ref: &char = &a;

let b: Box<char> = Box::new('b');
let b_ref: &Box<char> = &b;
let b_content_ref: &char = &(*b);

println!("a: {}", a);
println!("a_ref: {:p}", a_ref);
println!("b: {}", b);
println!("b_ref: {:p}", b_ref);
println!("b_content_ref: {:p}", b_content_ref);

}

a: a
a_ref: 0x7fff5a7e6cbc
b: b
b_ref: 0x7fff5a7e6cc8
b_content_ref: 0x7f33e7621008

Box<T> representation in memory

The Call Stack The Heap

main a 'a'

a_ref

b

b_ref

b_content_ref

'b'

fn main() {
let a: char = 'a';
let a_ref: &char = &a;

let b: Box<char> = Box::new('b');
let b_ref: &Box<char> = &b;
let b_content_ref: &char = &(*b);

println!("a: {}", a);
println!("a_ref: {:p}", a_ref);
println!("b: {}", b);
println!("b_ref: {:p}", b_ref);
println!("b_content_ref: {:p}", b_content_ref);

}

A Box's representation on the
stack is just a pointer to its
value on the heap. There is
"zero overhead" versus a heap
pointer in C.

How is a Box<T> able to release its dynamic memory?

• Recall heap values in C require you to release
memory manually via free when the values
are no longer needed.

• Rust automatically drops values for you when
their lifetime ends.

• So how is Box, whose stack value is just a
pointer, able to free its memory allocation
when it is dropped?

• There is a special Drop trait that structs and
enums can implement.
• Its drop function is called just before Rust drops

the its value. This gives you the ability to perform
additional clean-up when a value is dropped.

#[derive(Debug)]
struct Bigram {

first: char,
second: char,

}

impl Drop for Bigram {
fn drop(&mut self) {

println!("DROP - {:?}", self);
}

}

Demo of the Drop trait (1 of 2)

• Notice two Bigram structs are established and
printed, then the program ends.

• Before the program ends, there is additional
output thanks to the Drop implementation
shown on the previous slide.

• Notice the order values are dropped in.
• Why?

fn main() {
let a = Bigram {

first: 'a',
second: 'b',

};

let y = Box::new(Bigram {
first: 'y',
second: 'z',

});

println!("{:?}", a);
println!("{:?}", y);

// Drop when scope ends
}

Bigram { first: 'a', second: 'b' }
Bigram { first: 'y', second: 'z' }
DROP - Bigram { first: 'y', second: 'z' }
DROP - Bigram { first: 'a', second: 'b' }

Demo of the Drop trait (2 of 2)

Printing messages when a function is
dropped allows us to instrument a value's
lifetime in Rust.

In the example left (PollEv.com/compunc)

1. How many Bigram drops occur?

2. In what order do the drops occur?

fn main() {
let a = bigram_builder();
println!("main a: {:?}", a);

}

fn bigram_builder() -> Bigram {
let local1 = Bigram {

first: 'a',
second: 'b',

};
println!("New: {:?}", local1);

let local2 = Bigram {
first: 'x',
second: 'y',

};
println!("New: {:?}", local2);

local2
}

Representation of Structures in Memory

• Knowing a char's size in Rust is 4 bytes,
how many bytes does a Bigram require?

// Find a value's size in memory.
use std::mem::size_of_val;

struct Bigram {
first: char,
second: char,

}

fn main() {
let a = 'a';
let b = Bigram {

first: 'b',
second: 'c',

};

println!("{}", size_of_val(&a));
println!("{}", size_of_val(&b));

}

Representation of Structures in Memory

• How many bytes does an
NGram::Unigram require?
NGram::Bigram?

#[derive(Debug)]
enum NGram {

Unigram { first: char },
Bigram { first: char, second: char },

}

// Import function to tell us size in memory.
use std::mem::size_of_val;

fn main() {
let unigram = NGram::Unigram { first: 'a' };
let bigram = NGram::Bigram {

first: 'b',
second: 'c',

};

println!("unigram: {}", size_of_val(&unigram));
println!("bigram: {}", size_of_val(&bigram));

}

Nested Struct Size Cost
• Assume the size of an ID is 2 bytes:

oOne byte for variant tag

oOne byte for data

• How many bytes does a value of
type Animal require?

#[derive(Debug)]
enum Animal {

Dog { age: u8, id: ID },
Stray { id: ID },

}

#[derive(Debug)]
enum ID {

Tag { first_initial: u8 },
Chip { id: u8 },

}

fn main() {
let nelli = Animal::Dog {

age: 6,
id: ID::Tag { first_initial: b'n' },

};
println!("{:?}", nelli);

}

Recursive Enums - i.e. a Linked List

• What if you want to represent a linked
list with an enum?

• How many bytes are required to
represent an NGram?

• Answered? Question: Who owns b when
the println statement is encountered?

enum NGram {
Node { data: char, next: NGram },
End

}
use self::NGram::{Node, End};

fn main() {
let b = Node { data: 'b', next: End };
let a = Node { data: 'a', next: b };
println!("a: {}", size_of_val(&a));

}

Dynamic Memory to the Rescue

• The previous example felt natural
and possible because in memory
managed languages reference
types are always boxed (nullable)

pointers.

• To avoid the infinite size
structure problem, recursive
types must hold references to
descendants not their actual
values.

• To achieve the same semantics in
Rust, you'll Box recursively
typed, descendent values.
• In C, you would use a pointer.

#[derive(Debug)]
enum NGram {

Node { data: char, next: Box<NGram> },
End

}
use self::NGram::{End, Node};

fn main() {
let b = Node { data: 'b', next: Box::new(End) };
println!("b size: {}", size_of_val(&b));
let a = Node { data: 'a', next: Box::new(b) };
println!("a: {:?}", a);
println!("a size: {}", size_of_val(&a));

}

Preview: Recursive Traversals

• Beautiful recursive solutions are possible in Rust
thanks to the combination of:

1. Rust being an expression language
2. The match expression's concise ability to

distinguish variants of enums
3. The match expression's ability to assign matched

data to local variables

• Sadly, though, in systems programs iterative
(looping) solutions are preferred for their
performance characteristics.

• There is a postponed RFC (suggested change) in
Rust for Tail-Call Optimization that would make
some recursive solutions as performant as iterative
solutions in specific cases.

fn traverse_recur(ngram: &NGram) -> String {
match ngram {

Node { data, next } => format!("{} -> {}", data, traverse_recur(&next)),
End => String::from("End"),

}
}

• Iterative traversals like the
one shown right are more
common.

• Notice we have a mutable
ref cursor that starts at the
"head" NGram passed in. It
gets reassigned.

• Pattern matching with if-let
and while-let statements is
also powerful!

fn traverse(ngram: &NGram) -> String {
let mut result = String::new();
let mut cursor = ngram;
while let Node { data, next } = cursor {

result.push_str(&format!("{} -> ", data));
cursor = &next;

}
result.push_str("End");
result

}

Preview: Iterative Traversals

