
© Kris Jordan 2019 - All Rights Reserved

Before lecture: Start VM and pull 590 materials from upstream.
Then…
$ cd 590-material-<you>
$ git pull upstream master
$ cd 590-material-<you>/lecture/<today>



Announcements

• Midterm on Wednesday 2/20 to accommodate hacking or 
volunteering at Pearl Hacks!

• thdc Part 2 update: Division by 0 behavior:

$ thdc
9 0 / f
thdc: divide by zero
0
9



Little Languages for CS Diagramming

• Visualizations are frequently useful in computer science
• For example, it's helpful to illustrate graphs and trees visually

• There is a long history of little languages to describe 
visualizations
• In fact, Bentley's '88 paper where "Little Languages" was coined 

was a case study in Brian Kernighan's PIC language ('82)

• DOT is a diagramming language commonly used today
• Graphviz ('91-) is a package of tools that processes DOT notation
• Full Grammar: https://www.graphviz.org/doc/info/lang.html

https://www.graphviz.org/doc/info/lang.html


DOT Grammar (simplified)
graph -> "digraph {" stmt_list '}'

stmt_list -> stmt ';' stmt_list?

stmt -> node_stmt | edge_stmt

node_stmt -> node_id attr_list?

attr_list -> '[' a_list ']'

a_list -> ID '=' STRING (',' a_list)?

edge_stmt -> node_id "->" node_id

node_id -> ID (:port)?

Today we'll assume:

• node IDs are in the form of n<#>
• a_lists are either:

• label="<name of node>"
• shape="record" (for interior nodes which have descendants)



DOT Graph Example

digraph {

n0 [label="a"];
n1 [label="b"];

n0 -> n1;

}

graph -> "digraph {" stmt_list '}'

stmt_list -> stmt ';' stmt_list?

stmt -> node_stmt | edge_stmt

node_stmt -> node_id attr_list?

attr_list -> '[' a_list ']'

a_list -> ID'='STRING(',' a_list)?

edge_stmt -> node_id "->" node_id

node_id -> ID (:port)?

• The DOT string above produces the simple directed graph (digraph) shown.

• Using the example above, let's relate the tokens with the grammar.



Hands-on: Produce the Graphic Right

• Change directories to today's lecture and then into the 
00_dot directory. Open 00_digraph.dot in vim.

• To generate the graphic file, run the command in vim
• :! ./make_digraph

• On your host machine, open the folder of your VM and look 
for the file lec11_dot_output - drag this file into a web 
browser.

• Try editing the file, saving, rerunning the command above, 
and refreshing your browser until you've reproduced the 
diagram right.

• Check-in on PollEv.com/compunc when complete



Follow Along: The record Shape and "Ports"

• Having "records" with cells is often useful in 
diagramming.

• DOT's label strings for the record shape have their own 
little language for adding "ports" via <port_name> 
separated by '|'s

• You can then connect edges from or to a "port" by 
adding :<port_name> after the node id as shown below.

• Let's try extending the 01_record.dot file to produce the 
visualization right.

digraph {
n0 [label="<l>lft|<r>rgt" shape="record"];
n1 [label="a"];
n2 [label="b"];
n0:l -> n1;
n0:r -> n2;

}

Produces



Visualizing LISP-like Data Structures in DOT

• Suppose every Value is defined as above.

• Assume cons is a function that produces 
Value::Pairs by boxing its arguments.

• We want to produce the diagram right given 
the Value produced with cons below:

enum Value {
Char(char),
Pair(Box<Value>, Box<Value>),

}

cons(cons(Char('a'), Char('b')), Char('c'))



Emitting DOT Code Programmatically

• Our goal is to take a data 
structure in our program 
(produced above) as input

• And emit (produce) the DOT 
code right programmatically.

• What challenges do we face?
• How might we do this 

algorithmically?

cons(cons(Char('a'), Char('b')), Char('c'))

digraph {
n0 [label="<l>|<r>", shape="record"];
n1 [label="<l>|<r>", shape="record"];
n2 [label="a"];
n3 [label="b"];
n1:l -> n2;
n1:r -> n3;
n4 [label="c"];
n0:l -> n1;
n0:r -> n4;

}



DotGen - Helper Struct for our DOT Problem

To simplify some of the book keeping for emitting DOT file strings, I've setup a DotGen
helper struct with some methods to emit code.

fn emit_pair(&mut self) -> usize

Emits a Pair node (record) and returns its ID#

fn emit_char(&mut self, label: char) -> usize

Emits a Char node (ellipse) and returns its ID#

fn emit_edges(&mut self, pair: usize, lhs: usize, rhs: usize)

Emits edges to connect pair ID to lhs and rhs IDs.

fn to_string(&mut self) -> String

Returns a complete DOT file String containing all pairs, chars, & edges emitted.



Walking our structure recursively

digraph {
n0 [label="<l>|<r>", shape="record"];
n1 [label="<l>|<r>", shape="record"];
n2 [label="a"];
n3 [label="b"];
n1:l -> n2;
n1:r -> n3;
n4 [label="c"];
n0:l -> n1;
n0:r -> n4;

}

"Walk this way." -Aerosmith



Visiting a Pair: Emit a Pair Node (Record)

digraph {
n0 [label="<l>|<r>", shape="record"];
n1 [label="<l>|<r>", shape="record"];
n2 [label="a"];
n3 [label="b"];
n1:l -> n2;
n1:r -> n3;
n4 [label="c"];
n0:l -> n1;
n0:r -> n4;

}

Then go visit the left hand side. 



Visiting a Pair: Emit a Pair Node (Record)

digraph {
n0 [label="<l>|<r>", shape="record"];
n1 [label="<l>|<r>", shape="record"];
n2 [label="a"];
n3 [label="b"];
n1:l -> n2;
n1:r -> n3;
n4 [label="c"];
n0:l -> n1;
n0:r -> n4;

}

Then go visit the left hand side. 



Visiting a Char: Emit a Char Node

digraph {
n0 [label="<l>|<r>", shape="record"];
n1 [label="<l>|<r>", shape="record"];
n2 [label="a"];
n3 [label="b"];
n1:l -> n2;
n1:r -> n3;
n4 [label="c"];
n0:l -> n1;
n0:r -> n4;

}

Return your ID back to parent.



Completed Left Hand Side Visit: Record lhs_id

digraph {
n0 [label="<l>|<r>", shape="record"];
n1 [label="<l>|<r>", shape="record"];
n2 [label="a"];
n3 [label="b"];
n1:l -> n2;
n1:r -> n3;
n4 [label="c"];
n0:l -> n1;
n0:r -> n4;

}

Then go do the same with right hand side. lhs: n2



Visiting a Char: Emit a Char Node

digraph {
n0 [label="<l>|<r>", shape="record"];
n1 [label="<l>|<r>", shape="record"];
n2 [label="a"];
n3 [label="b"];
n1:l -> n2;
n1:r -> n3;
n4 [label="c"];
n0:l -> n1;
n0:r -> n4;

}

Return your ID back to parent.lhs: n2



Completed Right Hand Side Visit: Emit Edges

digraph {
n0 [label="<l>|<r>", shape="record"];
n1 [label="<l>|<r>", shape="record"];
n2 [label="a"];
n3 [label="b"];
n1:l -> n2;
n1:r -> n3;
n4 [label="c"];
n0:l -> n1;
n0:r -> n4;

}

Connect from current Pair node to two children 
based on their generated IDs.lhs: n2 rhs: n3



Completed Pair: Return Pair ID to Parent 

digraph {
n0 [label="<l>|<r>", shape="record"];
n1 [label="<l>|<r>", shape="record"];
n2 [label="a"];
n3 [label="b"];
n1:l -> n2;
n1:r -> n3;
n4 [label="c"];
n0:l -> n1;
n0:r -> n4;

}

Now that we've completed the left of the root 
node, we record its lhs_id as n1.lhs: n1



Visit Right Hand Side

digraph {
n0 [label="<l>|<r>", shape="record"];
n1 [label="<l>|<r>", shape="record"];
n2 [label="a"];
n3 [label="b"];
n1:l -> n2;
n1:r -> n3;
n4 [label="c"];
n0:l -> n1;
n0:r -> n4;

}

lhs: n1



Visiting a Char: Emit a Char Node

digraph {
n0 [label="<l>|<r>", shape="record"];
n1 [label="<l>|<r>", shape="record"];
n2 [label="a"];
n3 [label="b"];
n1:l -> n2;
n1:r -> n3;
n4 [label="c"];
n0:l -> n1;
n0:r -> n4;

}

lhs: n1 Return your ID back to parent.



Completed Right Hand Side Visit: Emit Edges

digraph {
n0 [label="<l>|<r>", shape="record"];
n1 [label="<l>|<r>", shape="record"];
n2 [label="a"];
n3 [label="b"];
n1:l -> n2;
n1:r -> n3;
n4 [label="c"];
n0:l -> n1;
n0:r -> n4;

}

lhs: n1
Connect from current Pair node to two children 
based on their generated IDs. Fin.rhs: n4



Follow Along: Recursive Walk

• Let's implement a visit function to recursively walk the tree and emit DOT constructs for 
any Value. We'll do our work in <lec11>/01_cons/src/main.rs

• Algorithm Overview:
• Base Case - We're visiting a Char node. Emit the char and return node id.
• Recursive Case - We're visiting a Pair node.

1. Emit a Pair record, record its returned id.
2. Recursively visit the left-hand side. Record its returned id.
3. Recursivley visit the right-hand side. Record its returned id.
4. Emit edges from pair id to lhs and rhs ids.
5. Return the pair id.

• Intuition: Each visit to a Value is responsible for emitting itself, visiting its descendants, 
and returning its own id.

• We can use the script ./make_diagram to run our program and generate the graphic.



Visit Solution

• Notice how cleanly the 
overview of the 
algorithm is able to 
translate into respective 
code 

match val {
Char(c) => dot.emit_char(c),
Pair(lhs, rhs) => {

let pair_id = dot.emit_pair();
let lhs_id = visit(dot, *lhs);
let rhs_id = visit(dot, *rhs);
dot.emit_edges(pair_id, lhs_id, rhs_id);
pair_id

}
}



What's the big picture?

Number(1)

Operator(+)

Number(2)

Operator(*)

Number(3)

"1+2*3" "1 2 3*+"

Tokenization Parsing Code Generation
Input characters are 
transformed into 
meaningful tokens.
(Part 1 of thdc.)

Data structures are 
built-up to represent the 
relationships between 
tokens.
(We're doing this next.)

Finally, an algorithm visits 
the hierarchy to generate 
some alternative 
representation.
(What we did today.)

This is effectively how compilers read your programs and emit machine code!


