
© Kris Jordan 2019 - All Rights Reserved



Leftmost Derivation Strategy for LL(1)

1. Begin with your start symbol

2. Extend it with its production rule
• Terminal nodes can consume terminal tokens directly
• Nonterminal nodes you'll come back to
• When there is alternation, 0 or more (*), 0 or 1 (?), 1 or more (+)…

• You'll need to peek ahead one token and follow any non-terminals to find the 
first terminal to match the peeked token. Add node for step to follow.

3. Once you've completed a production rule, start on step 2 with the 
leftmost non-terminal node in your diagram. Stop when all non-
terminals replaced.



Parse tree practice: ((1))
Expr -> Atom 

Atom -> '(' Expr ')' | number



1 * 2
Expr -> MaybeMulDiv

Atom -> '(' Expr ')' | number

MaybeMulDiv -> Atom MulDivOp?

MulDivOp -> ('*' | '/') Atom



1 * 2 * 3
Expr -> MaybeMulDiv

Atom -> '(' Expr ')' | number

MaybeMulDiv -> Atom MulDivOp?

MulDivOp -> ('*' | '/') Atom



1 / 2 / 3
Expr -> MaybeMulDiv

Atom -> '(' Expr ')' | number

MaybeMulDiv -> Atom MulDivOp?

MulDivOp -> ('*' | '/') Atom MulDivOp?



PollEv Speed Round

Comparing the expressions A and B

A. (8 / 4) / 2

B. 8 / (4 / 2)

Choose one:

A is equal to B

A is greater than B

A is less than B



PollEv Speed Round
Which of these two Expr trees best conveys how to compute: 8 / 4 / 2

BinOp

BinOp

8 4

2/

/

BinOp

BinOp

8

4 2/

/

Left Right



Grammar Derivations vs. Expr Tree Productions

Derivation of: 1 / 2 / 3
Expr -> MaybeMulDiv

Atom -> '(' Expr ')' | number

MaybeMulDiv -> Atom MulDivOp?

MulDivOp -> ('*' | '/') Atom MulDivOp?
Expr

MaybeMulDiv

Atom MullDivOp?

1 / Atom

2

MullDivOp?

/ Atom

3

MullDivOp?

Ɛ

BinOp

BinOp

1 2

3/

/

Desired Expr Tree

Notice the leftmost derivation of this grammar grows deeply on the right-
hand side.

However, the desired Expr tree, when operators of the same precedence are 
encountered one after another, grows deeply on the left-hand side to convey 
left-to-right evaluation. The key challenge of your Expr parser is producing this 
Expr tree recursively while your parser processes tokens as shown above.



1 + 2 * 3
Expr -> MaybeAddSub

Atom -> '(' Expr ')' | number

MaybeMulDiv -> Atom MulDivOp?

MulDivOp -> ('*' | '/') Atom MulDivOp?

MaybeAddSub -> MaybeMulDiv AddSubOp?

AddSubOp -> ('+' | '-') MaybeMulDiv AddSubOp?



(1 + 2) * 3
Expr -> MaybeAddSub

Atom -> '(' Expr ')' | number

MaybeMulDiv -> Atom MulDivOp?

MulDivOp -> ('*' | '/') Atom MulDivOp?

MaybeAddSub -> MaybeMulDiv AddSubOp?

AddSubOp -> ('+' | '-') MaybeMulDiv AddSubOp?



1 * 2 + 3
Expr -> MaybeAddSub

Atom -> '(' Expr ')' | number

MaybeMulDiv -> Atom MulDivOp?

MulDivOp -> ('*' | '/') Atom MulDivOp?

MaybeAddSub -> MaybeMulDiv AddSubOp?

AddSubOp -> ('+' | '-') MaybeMulDiv AddSubOp?


