
© Kris Jordan 2019 - All Rights Reserved

Respond to git survey:
http://bit.ly/590-19s-git

Start-up the VM!
No lecture directory today.

Following Along (in home directory on VM)

git clone https://github.com/KrisJordan/git-demo.git

cd git-demo

Respond to git survey:
http://bit.ly/590-19s-git

Start-up the VM!
No lecture directory today.

mailto:git@github.com:KrisJordan/git-demo.git

What is a Version Control System (VCS)?

• Non-trivial software projects involve lots of files

• Not only that, but there are lots of dependent files

• Suppose you have a class defined in one file and change the name of
one of its fields or methods... every dependent file needs to be
updated too

• When you are working on a project, you will want to play with various
changes and refactorings

Why git over another VCS?

• Initially developed in 2005 by Linus Torvalds, creator of Linux, to be the version
control system for the Linux operating system's code.

• In the last decade, git won out as the de facto VCS of engineers.
• Previously: SVN (Subversion 2000) and CVS (Concurrent Versions System 1990)
• Contemporary: Mercurial (2005)

• Why did git win?
• It's fast... remarkably performant compared to prior VCS systems.
• It's distributed... everyone has a project's complete history, no internet needed.
• It's immutable by default... you have to try really hard to mutate existing commits.
• It's append-only... you have to try really hard to accidentally delete old work.
• It's robust... it ensures integrity of all data to avoid corruptions.

What is GitHub versus git?

• git is Version Control System software you install and use locally

• GitHub is a social web site for sharing and collaborating on projects
whose source code is maintained with the git VCS

• You can use git without using GitHub, but not vice-versa.

Project Working Directory

index
.html

style
.css

READ
ME

TODO

Suppose you're working on a web site...

This is your project's working directory.

Its README file describes the project.

Its index.html and style.css files are the
important files you're working on.

The TODO file is a personal text file you're
keeping to yourself, independent of team.

Project Working Directory

index
.html

style
.css

READ
ME

TODO

... and that its history is maintained by a git repository.

The .git Repository

READ
ME

Commit 1 parent Commit 0 parent: 0

READ
ME

index
.html

style
.css

Message

First commit!
Message

Add skeleton html and css files.

This is your project's commit history!

What is a commit? It's a snapshot, or backup, of your
project's files at a specific moment in your project's history.

How did these commits get here? For now, assume your
teammate added them. Soon, you'll make a commit!

Where is this data stored? In the .git/ folder in your project.

Project Working Directory

index
.html

style
.css

READ
ME

TODO

Commits are linked to their parents or "previous version".

The .git Repository

READ
ME

Commit 1 parent Commit 0 parent: 0

READ
ME

index
.html

style
.css

Message

First commit!
Message

Add skeleton html and css files.

Notice the second commit holds a reference to its
parent, or "previous" commit.

You can imagine the history of commits in a very
simple project like a linked list*.

* This reference is called parent, though, because once a repository makes use
of branches it is more like a tree than a list.

Project Working Directory

index
.html

style
.css

READ
ME

TODO

A commit contains only important* file changes.

The .git Repository

READ
ME

Commit 1 parent Commit 0 parent: 0

READ
ME

index
.html

style
.css

Message

First commit!
Message

Add skeleton html and css files.

Suppose index.html and style.css were added to the project for this
commit. No changes to README.

We're illustrating those two files were added/changed in this commit,
but README was unchanged and the previous version still holds.

What is an important file change? Any file the person making the
commit decides to add to the commit. Notice, TODO was not included.

Project Working Directory

index
.html

style
.css

READ
ME

TODO

Each commit has a message and other metadata.

The .git Repository

READ
ME

Commit 1 parent Commit 0 parent: 0

READ
ME

index
.html

style
.css

Message

First commit!
Message

Add skeleton html and css files.

Each commit has a message describing what is important about this
specific commit in the project's history.

The person who makes a commit must write this message. When you
make a commit you should write an informative description!

Each commit also has a timestamp and author name/e-mail.

Project Working Directory

index
.html

style
.css

READ
ME

TODO

What's the big deal?

The .git Repository

READ
ME

Commit 1 parent Commit 0 parent: 0

READ
ME

index
.html

style
.css

Message

First commit!
Message

Add skeleton html and css files.

Suppose you deleted a lot of work in style.css, saved,
and then realized you needed something deleted...

...with your history in git, it's easy to checkout a
committed version of this file without fear of loss.

You can also restore all files in a project back to a
specific commit in its history.

Project Working Directory

index
.html

style
.css

READ
ME

TODO

How do you get your changes into a git repository?

The .git Repository

READ
ME

Commit 1 parent Commit 0 parent: 0

READ
ME

index
.html

style
.css

Message

First commit!
Message

Add skeleton html and css files.

Imagine you've made changes to style.css and are ready
to commit those changes to the history of the project.

How do you make a commit?

Project Working Directory

index
.html

style
.css

READ
ME

TODO

First, you have to tell git which file changes are important.

The .git Repository

READ
ME

Commit 1 parent Commit 0 parent: 0

READ
ME

index
.html

style
.css

Message

First commit!
Message

Add skeleton html and css files.

The first step in making a commit is staging your
important file changes to the staging area.

The data in your staging area is stored behind the scenes
in your .git repository.

Staging Area

Project Working Directory

index
.html

style
.css

READ
ME

TODO

Checking the status of your staging area

The .git Repository

READ
ME

Commit 1 parent Commit 0 parent: 0

READ
ME

index
.html

style
.css

Message

First commit!
Message

Add skeleton html and css files.

When `git status` responds with:

nothing to commit, working tree clean

It means there is nothing staged for a commit.

Staging Area

git status

Project Working Directory

index
.html

style
.css

READ
ME

TODO

Add a file to your staging area.

The .git Repository

READ
ME

Commit 1 parent Commit 0 parent: 0

READ
ME

index
.html

style
.css

Message

First commit!
Message

Add skeleton html and css files.

The only important file we want to stage is style.css, so we use
the git add command (above) to add it to the staging area.

We specifically don't want our personal TODO file in this
commit and you could imagine small, tinkering changes to
index.html which aren't important to the project either.

Staging Area

git add style.css
style
.css

git status

Project Working Directory

index
.html

style
.css

READ
ME

TODO

Make a commit.

The .git Repository

READ
ME

Commit 1 parent Commit 0 parent: 0

READ
ME

index
.html

style
.css

Message

First commit!
Message

Add skeleton html and css files.

Staging Area

style
.css

Commit 2 parent

index
.html

style
.css

READ
ME

Message

Improve styling.

git commit -m 'Improve styling.'
The git commit command takes
your staging area and
transforms it into a commit.

Notice, git takes care of
establishing the parent link and
links to previous versions of
files unchanged in this commit.

Project Working Directory

index
.html

style
.css

READ
ME

TODO

After a commit, your staging area is cleared.

The .git Repository

READ
ME

Commit 1 parent Commit 0 parent: 0

READ
ME

index
.html

style
.css

Message

First commit!
Message

Add skeleton html and css files.

Staging Area

Commit 2 parent

index
.html

style
.css

READ
ME

Message

Improve styling.

git status

Project Working Directory

index
.html

style
.css

READ
ME

TODO

git maintains a special kind of reference called a branch

The .git Repository

READ
ME

Commit 1 parent Commit 0 parent: 0

READ
ME

index
.html

style
.css

Message

First commit!
Message

Add skeleton html and css files.

Staging Area

Commit 2 parent

index
.html

style
.css

READ
ME

Message

Improve styling.

Your default branch in git is
called the master branch.

Really, it's just a reference to a
commit. By default, it refers to
the last commit made.

master

Project Working Directory

index
.html

style
.css

READ
ME

TODO

HEAD keeps track of the branch you are working on

The .git Repository

READ
ME

Commit 1 parent Commit 0 parent: 0

READ
ME

index
.html

style
.css

Message

First commit!
Message

Add skeleton html and css files.

Staging Area

Commit 2 parent

index
.html

style
.css

READ
ME

Message

Improve styling.

Your repository's HEAD is a reference to
the branch you're working on.

When you make a commit, the parent of
the commit is set to be the commit
HEAD refers to.

HEAD and your current branch then
update to refer to your new commit.
Just like a linked list.

HEAD

master

Project Working Directory

index
.html

style
.css

READ
ME

TODO

Want to try out an idea? Checkout a new branch!

The .git Repository

READ
ME

Commit 1 parent Commit 0 parent: 0

READ
ME

index
.html

style
.css

Message

First commit!
Message

Add skeleton html and css files.

Staging Area

Commit 2 parent

index
.html

style
.css

READ
ME

Message

Improve styling.

Working in a branch is recommended for
trying out ideas. Like a tree branch, its commit
history will grow in its own direction separate
from the master branch.

Once your idea is fully formed, you can merge
your branch into the master branch.

When you run the command to the right, a
new branch is established and your HEAD is
changed to it.

git checkout -b content

HEAD

master

content

Project Working Directory

index
.html

style
.css

READ
ME

TODO

Want to try out an idea? Checkout a new branch!

The .git Repository

READ
ME

Commit 1 parent Commit 0 parent: 0

READ
ME

index
.html

style
.css

Message

First commit!
Message

Add skeleton html and css files.

Staging Area

Commit 2 parent

index
.html

style
.css

READ
ME

Message

Improve styling.

Suppose you added some content to
your index.html file and you're ready to
commit it. Do you remember how?

HEAD

master

content

Project Working Directory

index
.html

style
.css

READ
ME

TODO

Making another commit...

The .git Repository

READ
ME

Commit 1 parent Commit 0 parent: 0

READ
ME

index
.html

style
.css

Message

First commit!
Message

Add skeleton html and css files.

Staging Area

Commit 2 parent

index
.html

style
.css

READ
ME

Message

Improve styling.

Suppose you added some content to
your index.html file and you're ready to
commit it. Do you remember how?

HEAD

master

content

Project Working Directory

index
.html

style
.css

READ
ME

TODO

Making another commit...

The .git Repository

READ
ME

Commit 1 parent Commit 0 parent: 0

READ
ME

index
.html

style
.css

Message

First commit!
Message

Add skeleton html and css files.

Staging Area

Commit 2 parent

index
.html

style
.css

READ
ME

Message

Improve styling.

Step 1) git add to staging area.

HEAD

master

content

git add index.html

index
.html

Project Working Directory

index
.html

style
.css

READ
ME

TODO

Making a commit on a branch

The .git Repository

READ
ME

Commit 1 parent Commit 0 parent: 0

READ
ME

index
.html

style
.css

Message

First commit!
Message

Add skeleton html and css files.

Staging Area

Commit 2 parent

index
.html

style
.css

READ
ME

Message

Improve styling.

Whoa! Notice the content branch
and HEAD were updated to refer to
the new commit.

The master branch remained in
place.

We're illustrating this branch as
moving in a separate direction
from master by convention.

HEAD

master

git commit -m 'Add content.'

index
.html Commit 3

parent

READ
ME

index
.html

style
.css

Message

Add content.content

Project Working Directory

index
.html

style
.css

READ
ME

TODO

What's the big idea of branches?

The .git Repository

READ
ME

Commit 1 parent Commit 0 parent: 0

READ
ME

index
.html

style
.css

Message

First commit!
Message

Add skeleton html and css files.

Commit 2 parent

index
.html

style
.css

READ
ME

Message

Improve styling.

You could imagine continuing to
make progress and additional
commits on this "feature branch".

You can easily revert back to your
master branch, though.

You could also easily start a
separate branch to explore other
feature ideas.

Good idea? Merge the feature
branch back into the master
branch.

Bad idea? Checkout the master
branch and delete the feature
branch.

HEAD

master

Commit 3

parent

READ
ME

index
.html

style
.css

Message

Add content.content

Project Working Directory

index
.html

style
.css

READ
ME

TODO

Pushing a branch to GitHub

The .git Repository

READ
ME

Commit 1 parent Commit 0 parent: 0

READ
ME

index
.html

style
.css

Message

First commit!
Message

Add skeleton html and css files.

Commit 2 parent

index
.html

style
.css

READ
ME

Message

Improve styling.

Want to share your branch with a
collaborator to check-out?

You can push a branch to a remote
repository using:
git push <remote> <branch>

Remote is usually "origin" and
branch is the name of the branch
you're pushing.

HEAD

master

Commit 3

parent

READ
ME

index
.html

style
.css

Message

Add content.content

git push origin content

Project Working Directory

index
.html

style
.css

READ
ME

TODO

Checking out another branch

The .git Repository

READ
ME

Commit 1 parent Commit 0 parent: 0

READ
ME

index
.html

style
.css

Message

First commit!
Message

Add skeleton html and css files.

Commit 2 parent

index
.html

style
.css

READ
ME

Message

Improve styling.

HEAD

master

Commit 3

parent

READ
ME

index
.html

style
.css

Message

Add content.

content

git checkout master

When you checkout a branch, your
HEAD switches to the branch, AND

The files in your project's working
directory are set to exactly match their
contents at that branch's last commit.

Project Working Directory

index
.html

style
.css

READ
ME

TODO

Merging a feature branch in to master (fast-forward)

The .git Repository

READ
ME

Commit 1 parent Commit 0 parent: 0

READ
ME

index
.html

style
.css

Message

First commit!
Message

Add skeleton html and css files.

Commit 2 parent

index
.html

style
.css

READ
ME

Message

Improve styling.

HEAD

master

Commit 3

parent

READ
ME

index
.html

style
.css

Message

Add content.

content

git merge content

You can merge another branch
into your current HEAD branch
(in this example master).

The command is git merge.

It is a "fast-forward" merge
when the branch can just be
updated to refer to the same
commit.

Commit 3 parent

READ
ME

index
.html

style
.css

Message

Add content.

Project Working Directory

index
.html

style
.css

READ
ME

TODO

Deleting a branch when you're done with it.

The .git Repository

READ
ME

Commit 1 parent Commit 0 parent: 0

READ
ME

index
.html

style
.css

Message

First commit!
Message

Add skeleton html and css files.

Commit 2 parent

index
.html

style
.css

READ
ME

Message

Improve styling.

HEAD

master

Commit 3 parent

READ
ME

index
.html

style
.css

Message

Add content.

Staging Area

git branch -d content

Project Working Directory

index
.html

style
.css

READ
ME

TODO

Pushing your master branch to GitHub

The .git Repository

READ
ME

Commit 1 parent Commit 0 parent: 0

READ
ME

index
.html

style
.css

Message

First commit!
Message

Add skeleton html and css files.

Commit 2 parent

index
.html

style
.css

READ
ME

Message

Improve styling.

When pushing to a branch others
are collaborating on, be sure to
pull before pushing.

When you pull, git is trying to
merge changes made to the branch
by collaborators first.

Then, when you push your master
branch, your commits are
uploaded to the remote repository.

HEAD

master

Commit 3

parent

READ
ME

index
.html

style
.css

Message

Add content.content

git pull origin master
git push origin master

