
© Kris Jordan 2019 - All Rights Reserved

Concepts to Study - Languages and PS

• Regular Definitions & Grammars
• Operators

Concatenation

| Alternation

* Zero or More

? Zero or One

+ One or More

• Ability to compare an input string
with a grammar and determine
whether valid or invalid

• Ability to derive and draw parse
trees

• Understanding of problem sets:
• thecho - Escaping
• thdc - Tokenization
• thdc - Direct Interpretation
• thbc - Parsing
• thbc - Translation (next midterm)

• Higher level understanding of the
purpose of each step and how it would
translate to processing other
languages.

• Lower level understanding of
architecture of each program / how
the components of each fit together
and interact.

Concepts to Study - Systems Programming & Tools

• Programming Concepts
(General)
• Call Stack and Heap

• null

• Command-line
Arguments
• std::env::args() in Rust

• Environment Variables
• std::env::vars() in Rust

• Test-driven Development

• High-level understanding
of arrays in C

• Block Scope

• Programming Concepts
(Rust)
• References
• Mutability
• Lifetimes (high-level not

syntax)
• Standard interfaces and

enums: Iterator,
Option<T>,
Result<T, E>,
Box<T>

• Pattern matching:
if-let, while-let, match

• struct vs. enum

• Shell and CLI Tools
• Structure of commands

(i.e. command vs.
arguments)

• File system: . vs ..

• Purpose of $PATH

• Purpose of commands:
ls, pwd, cd, echo,
which, egrep, git

• GRQs

Unix-like Process Model - Standard Input/Output Streams

Process
Running program.

Standard Input
(stdin)

Standard Output
(stdout)

Standard Error
(stderr)

• Every instance of a running program in an operating system is called a process.

• Each process has standard inputs and outputs as shown above.

• When a process is run interactively in a shell session, by default:
• When the process reads from standard input, then you can type text input in the shell
• When the process writes to standard output or error, then you will see text output in the shell

Printed to
Shell Session's

Terminal

Keyboard
Input from

Shell
Session's
Terminal

Standard Input/Output in Rust

• In the thbc program, the main.rs file reads standard input via:

• Writes to standard output via:

• Writes to standard error via (notice the leading e):

fn read_line() -> Result<String, io::Error> {
let mut input = String::new();
std::io::stdin().read_line(&mut input)?;
Ok(input)

}

println!("{}", dc_gen::to_dc(&statement));

eprintln!("thbc: {}", msg)

Redirection

• Overview of redirection:
• https://youtu.be/XvDZLjaCJuw?t=254

• 4:15 to 11:07

https://youtu.be/XvDZLjaCJuw?t=254

Standard Output Redirection - The > Operator

Process
Running program.

Standard Input
(stdin)

Standard Output
(stdout)

Standard Error
(stderr)

• When you want a process' output to be saved in a file:

• Use the output redirection > operator followed by a file path.

$ echo '1 2 + p' >formula.txt
Begin a process for the echo program and give it '1 2 + p' as an argument. Redirect its output to a blank
new file named formula.txt.

>file
Keyboard

Input from
Shell

Session's
Terminal

Printed to
Terminal

Standard Input Redirection - The < Operator

Process
Running program.

Standard Input
(stdin)

Standard Output
(stdout)

Standard Error
(stderr)

• When you want a process' input to be read in from a file:

• Use the input redirection < operator followed by a file path.

$ dc <formula.txt
Begin a process for the dc program and use the contents of formula.txt as its standard input.

Printed to
Shell Session's

Terminal

<file

Standard I/O Redirection - Composition

Process
Running program.

Standard Input
(stdin)

Standard Output
(stdout)

Standard Error
(stderr)

• You can combine both operators, as well:

$ dc <formula.txt >solution.txt

Begin a process for the dc program and use the contents of formula.txt as its standard
input. Write its output to the file solution.txt.

<filein
>fileout

Printed to
Terminal

Standard I/O Redirection - Notes and Disclaimers

• Every single concept here applies to every program run in a shell
regardless of what programming language it was written in.

• You can append standard output to a file rather than overwrite it with the
append redirection operator: >>
• Example: $ dc <formula-2.txt >>solution.txt

• You can also redirect stderr with the cryptic looking 2> redirection
operator. We'll learn what that 2 is when we learn about file handle ids.
• Spoiler: the single > symbol is a convenient shorthand for 1> where 1 is stdout's id.

Pipelines

• https://youtu.be/XvDZLjaCJuw?t=798

• 13:18 to 16:42

https://youtu.be/XvDZLjaCJuw?t=798

Standard I/O - Pipelines

Process A
Running program.

Standard Input
(stdin)

Standard Output
(stdout)

Standard Error
(stderr)

• Piping connects the stdout of one process to the stdin of another.

• In bash, the pipe operator is the single vertical bar |

$ echo '1 2+p' | dc

Begin processes for echo and then pipe its standard output into the standard input of another
new process begun for dc.

Terminal

Process B
Running program.

Standard Input
(stdin)

stdout

stderr

Pipe

Make each program do one thing well. To do a new job, build afresh
rather than complicate old programs by adding new "features".

Expect the output of every program to become the input to another,
as yet unknown, program. Don't clutter output with extraneous
information. [..] Don't insist on interactive input.

Doug McIlroy
1978 Bell System Technical Journal
Inventor of Unix Pipelines

