
© Kris Jordan 2019 - All Rights Reserved

Start-up the VM!
No lecture directory today.

Workflows
• Different teams will have different workflows for organizing repositories

• Rules will inform:
• When and why should you establish a branch?
• When are you allowed to merge a branch back in?
• How do you release a version of a project?
• How do you catch up a repository?

• Often in organizations these rules will be influenced by:
• Are you passing all tests?
• Have you done a code review?
• Will your branch merge cleanly?

• Today we'll explore the most important skill in these workflows: merging.
• For the full story on how large teams operate, read more here:
• https://nvie.com/posts/a-successful-git-branching-model/

https://nvie.com/posts/a-successful-git-branching-model/

Starting a new git Repository

1. Make a directory for your project:

cd $HOME
mkdir git-workflow
cd git-workflow

2. Initialize the git repository:

git init

3. Setting up the project on GitHub, too?
git remote add origin git@github.com:<UserName>/<Repository>.git

Follow-along: Initial Commits

• Let's establish a file named lyrics.txt

• For the first commit, we'll add the line: Is this the real life
• Commit message: Start of a great song.

• For the second commit, we'll add the line: Is this just fantasy
• Commit message: More of the song.

Commit Aliases

• HEAD - the current commit you have checked out

• HEAD^ - the parent of HEAD

• HEAD~N - the Nth ancestor of HEAD
• HEAD~1 is the same as HEAD^

• HEAD~2 is the grandparent of HEAD

• See last 10 commits:
git log --oneline --graph HEAD~10..

HEAD

Branches

• Commonly you'll use feature branches
• Working on a new feature? Establish a branch!

• To create a branch, in two steps:
git branch feature-new
git checkout feature-new

• These steps are usually combined:
git checkout -b feature-new

• Confirm branch checked out:
git branch

• Remember, a branch is just a pointer to a commit. So a
new branch doesn't diverge until commit(s) are made.

master

feature-new

HEAD

Branches: Follow-along

• Let's establish a branch for a new verse
• git checkout -b feature-poor-boy

1. Add the following line to lyrics.txt:
I'm just a poor boy

2. Make a commit with the message:
Starting the great poor boy verse.

3. Add the following line to lyrics.txt:
and nobody loves me

4. Make a commit with the message:
It keeps getting better.

master feature-poor-boy

HEAD

Branches: Changing Branches

• To change to a different branch, check it out:

git checkout master

• This changes the files in your working
directory to exactly match their contents of
the branch (commit) checked out.

• If there were uncommitted changes you
would risk losing in this process, git would
require you to deal with them first.

master feature-poor-boy

Divergent Histories

• Let's add another commit to master.

• Add another line to the first verse:
Caught in a landslide

• Add a commit with the message:
This song is getting good

• Notice now our histories are divergent!
• Visualize: git log --oneline --graph --all
• This happens frequently in team projects. Team

members make progress and the project advances
while you're working on a feature.

master feature-poor-boy

HEAD

Merging Feature Branches

• When merging feature branches it's a best practice to
establish a "merge commit"
• In doing so, the presence of the feature branch's commits

separate from the master branch's is retained.

• In cases like the one we're in it's unavoidable.

• In other cases, as shown in a previous lecture, when there
are no commits on the branch you're merging into
(master), fast-forwarding avoids a merge commit.
• Fast-forwarding makes it look as though intermediate commits

were all a part of the master branch.

• To merge, checkout the branch you're merging into, then:
git merge --no-ff feature-poor-boy

master feature-poor-boy

HEAD

Merge Commits

• Notice a merge commit has two parents!

• Even though git has "branches" commit histories are not
usually trees, they're graphs.

• More specifically, git repositories are
• directed

• each commit points to parent(s)
• parents do not have references to children

• acyclic
• you cannot create a self-referential or cyclical history
• there is a path from the current commit back to the

start of the project
• graphs

master feature-poor-boy

HEAD

Conflicts

• What happens when two
branches have modified the
same parts of a file in divergent
commits and you attempt to
merge the branches?

• A conflict!

• Let's make one...

master feature-poor-boy

HEAD

Creating a conflict (1/3)

• Let's create and checkout a new branch:

git checkout -b feature-edits

• Let's add a question mark to the first two
lines:
• Is this the real life?

• Is this just fantasy?

• Make a commit with message:
• git commit -m 'Add question marks'

master

HEAD

feature-edits

HEAD

Creating a conflict (2/3)

• Let's switch back over to master

git checkout master

• Let's make the first two lines a single line:
• Is this the real life / Is this just fantasy

• Make a commit with message:

git commit -m 'Yas Queen'

master feature-edits

HEAD

Creating a conflict (2/3)

• Now let's merge edits onto master
git merge --no-ff edits

• Uh oh...
• Auto-merging lyrics.txt
• CONFLICT (content): Merge conflict in lyrics.txt
• Automatic merge failed; fix conflicts and then

commit the result.

• To see which files conflict, check status:
git status

master feature-edits

Merging with Conflicts

• Two options:
1. Abort Merge - git merge --abort

2. Fix Conflict and Make Commit

• Opening lyrics.txt, you'll see the conflicting lines:

• You decide what to keep and what to delete, make the changes, & save.

• Add the conflicting file to stage, make a commit, and you're merged!

1 <<<<<<< HEAD
2 Is this the real life / Is this just fantasy
3 =======
4 Is this the real life?
5 Is this just fantasy?
6 >>>>>>> feature-edits
7 Caught in a landslide

master

feature-edits

Next Problem Set Series: grep

• For the next problem set you can choose to work solo or in pairs.
• No groups larger than 2 will be permitted.
• We encourage pairs but will require substantive contributions from both of you!

• Sequence:
1. Tokenize and Parse a Regular Expression to print its Expr Tree
2. Read in files line-by-line and (initially) print them to the screen
3. Construct a non-deterministic finite state machine (NFA) from the Expr Tree
4. Simulate the NFA by feeding it lines of text and printing lines with a match

• There will be much less hand-holding this sequence. You will be
responsible for establishing the architecture of the program (being
informed by the structure used in bc/dc is totally ok, but they're not
solving the same problems).

