
© Kris Jordan 2019 - All Rights Reserved

Start-up the VM!
git pull upstream master

cd <repo>/lecture/18-files-and-crates

Today's Tutorial

• Today's lecture is a project-style tutorial implementing the `cat` utility

• It's a utility that illustrates how to read inputs line-by-line
• We'll explore how to read files line-by-line

• As well as standard input

• Both of these input sources implement the same interfaces and thus
can share processing code
• The same interface is shared by Rust's networking libraries, as well, so you

could extend today's demo to read URLs over the internet

Implementing cat

• The cat utility's official purpose is to concatenate files to stdout

• It's most frequently used to print a single file's contents to stdout, but
its signature is actually:

• cat option* file*

• Zero-or-more files?!
• When 0 files are provided, cat reads from stdin rather than file paths.
• Try it: cat <enter> hello <enter> Ctrl+C to quit

Creating a new project
• Establish a new project:

• cargo new thcat
• cd thcat

• Add a structopt (command line option parser) crate dependency:
• vim Cargo.toml
• [dependencies]
• structopt = "0.2"

• Build to precompile dependencies:
• cargo build

• Open main file and silence warnings about unused symbols (for now):
• #![allow(unused)]

extern crate structopt;
use structopt::StructOpt;

#[derive(Debug, StructOpt)]
#[structopt(name = "cat", about = "Concatenate FILE(s)")]
struct Opt {

#[structopt(help = "FILES")]
paths: Vec<String>,

}

fn main() {
let opt = Opt::from_args();
println!("{:?}", opt);

}

Libraries for Parsing Command-line Options

• Most languages have popular
libraries for abstracting away the
problem of parsing command-line
options and generating helpful
documentation.

• In Rust, the structopt crate is the
most common choice.

• It takes an annotated struct (like
you're seeing to the right) and
automatically parses command-line
inputs into the struct, generates
help and version information, and is
flexible for other kinds of options.

• https://docs.rs/structopt/0.2.14/structopt/

https://docs.rs/structopt/0.2.14/structopt/

fn main() {
let opt = Opt::from_args();
let result = print_files(&opt);
if let Err(e) = result {

eprintln!("{}", e);
}

}

use std::fs::File;
use std::io::BufRead;
use std::io;

fn print_files(opt: &Opt) -> io::Result<()> {
Ok(())

}

Setting up for File I/O

Input/Output always introduces the
possibility of errors external to the
system (such as file not found). As
such, you need to handle the errors.

We'll need to import a few symbols for the
demo. BufRead is a trait that's explicitly
imported for reasons we'll discuss when we
get to traits.

Our initial goal here is just getting
skeleton code to compile. We'll fill
in the details next.

Reading from Files
• The general process for reading input from a file is:

1. Ask the operating system for a file handle
• This is a descriptor the operating system keeps track of specific to your process.
• Your program will use it in subsequent calls to ask for data and close the file.
• The operating system uses it to keep track of how its resources are allocated.

2. Ask the operating system for more contents of the file by its handle
• Behind the scenes systems calls are happening with the file descriptor "hey, give me the next

chunk of this file"

3. Tell the operating system to close the file handle
• When a process is done reading a file, it lets the OS know to conserve resources
• In Rust, this happens automatically for you when the file handle's lifetime expires and is dropped
• If your program exits, whether normally or during panic, the operating system handles the cleanup

of closing out a process' open file handles

Iterating through the Paths and Reading Each File

fn print_files(opt: &Opt) -> io::Result<()> {

for path in opt.paths.iter() {

let file = File::open(path)?;

let reader = io::BufReader::new(file);

for line_result in reader.lines() {
println!("{}", line_result?);

}

}

Ok(())
}

Our Opt has a paths Vec that we'll iterate through…

Here we're opening a File which gives us a
handle to work with from the OS. Note this has
the ability to Err (no file or wrong permissions).

We want to read our data line-by-line. Using a
Buffered Reader improves efficiency over
reading char-by-char. We'll discuss buffers in
more depth soon.

The lines method of a BufReader returns
an iterator of Result<String>. This implies
we can get an Err reading a line (like the
file was deleted while this program was
reading it).

Adding Support for Using cat with Standard Input

• You can also establish a buffered
line reader for standard input.

• To do so, a "lock" is acquired on
the standard input's file
descriptor.
• File descriptor?!? More on this,

soon, but a great design
innovation of Unix was treating
everything as a "file".

• Notice that reading lines from
stdin can also error (this usually
only happens when a "pipe
breaks" and a previous program
closes an output or crashes).

fn print_stdin() -> io::Result<()> {
let stdin = io::stdin();
let reader = stdin.lock();
for line_result in reader.lines() {

println!("{}", line_result?);
}
Ok(())

}

// fn main...
let result = if opt.paths.len() > 0 {

print_files(&opt)
} else {

print_stdin()
};

Notice there's redundancy in each of these loops:

// fn print_stdin
let reader = stdin.lock();
for line_result in reader.lines() {

println!("{}", line_result?);
}

// fn print_files
let reader = io::BufReader::new(file);
for line_result in reader.lines() {

println!("{}", line_result?);
}

• BufReader implements the BufRead trait (with the lines() method)

• Standard Input's lock() returns a StdInLock which also implements BufRead

• The logic inside the loop for `cat` is super straightforward but you could imagine
(and will see in `thgrep`) doing more with each line and having more
redundancy

• Let's look at how to make use of a generic function to process these BufReads

Processing Input from Different Sources Generically

fn print_lines<R: BufRead>(reader: R) -> io::Result<()> {
for line in reader.lines() {

println!("{}", line?);
}
Ok(())

}

// fn print_files
let reader = io::BufReader::new(file);
print_lines(reader)?;

// fn print_stdin
let stdin = io::stdin();
let reader = stdin.lock();
print_lines(reader)

Notice we've abstracted out the
printing loop that iterates over lines()

We can now make use of this function
from both print_files and print_stdin.

