
© Kris Jordan 2019 - All Rights Reserved



A little bit about myself...

● Currently a senior majoring in computer science 
and mathematics

● Interned at Google Mountain View (headquarters) 
summers of 2017 and 2018
○ Google Photos
○ Google Image Search



● You write some code, and then ask your peer to review it.

What is Code Review

● The reviewer(s) reads your code, 
○ raises questions, and
○ provides suggestions on how to improve the code

● Line-by-line basis

● Voluntary
○ Anyone should be able to code review
○ You do not have to follow any suggestions



Why Code Review?

● Improve code quality
○ More eyes are more likely to catch more bugs
○ “The sooner you find bugs, the better”
○ Improve project reliability

● Promote responsibility of the author
○ Logical correctness
○ Readability



Why Code Review?

● Promote bi-directional mentoring and learning

● Promote openness in company culture
○ Nothing is a secret
○ Open to mistakes - everyone makes mistakes!

● Enforce uniform standard



Different Forms of Code Review

● Formal tool
● Over-the-shoulder
● Email threads
● Walkthroughs during meeting

Also may differ in terms of frequency, requirement, goals, etc.



Code Review at Google

● Every line of code to be submitted needs to pass the code review first.



Code Review at Google

● To pass the code review, need 2 LGTMs (LGTM = looks good to me)
○ From an owner of the code section
○ From a developer with the language readability for the reviewed code 

■ http://google.github.io/styleguide/ 

http://google.github.io/styleguide/


Code Review at Google

● Typically done through a web 
interface
○ The reviews that you sent out
○ The reviews that you need to do

Picture from: https://www.quora.com/What-is-Googles-internal-code-review-policy-process



Live Demo

Let’s do a real code review

https://github.com/QZHelen/CodeReview590 

https://github.com/QZHelen/CodeReview590


Recap: Code Review at Google

● Make edits to some code
● When it is ready to submit, send it out to code reviewers (web interface)
● Reviewers view diff
● Potential back and forth communication, with the goal to reach an 

agreement
● Finally, when the reviewers reply “lgtm”, you can submit your code!



My Personal Experience with Code Review

● It helped me get quickly familiar with software development at Google, and 
taught me a lot new knowledge and practices.

● However, it will not always completely prevent errors.



Takeaways from Code Review

● As a developer, achieving the functionality is not the only goal.
○ Readability
○ Maintainability and extensibility
○ Security

● Programming is never a lone work
○ Involves constantly learning from others
○ Communication everywhere



Questions?



References

● https://www.youtube.com/watch?v=sMql3Di4Kgc

https://www.youtube.com/watch?v=sMql3Di4Kgc


Pair Programming is… Programming in Pairs

• Two people collaborating synchronously on the same unit of code, usually 
in person and with only one keyboard input.

• Often one person is the driver and the other is the navigator.
• Swapping roles with frequency is strongly encouraged.

• Why do people and organizations embrace pair programming?
• Improves quality of resulting code. Reduces time spent being stuck on small stuff.

• Promotes sharing of knowledge and improves ability to communicate about code.

• Increases confidence in and enjoyment of programming.



Pair Programming Guide by Weblab –

https://medium.com/@weblab_tech/pair-programming-guide-a76ca43ff389

https://medium.com/@weblab_tech/pair-programming-guide-a76ca43ff389


Pair Programming Guide by Weblab –

https://medium.com/@weblab_tech/pair-programming-guide-a76ca43ff389

https://medium.com/@weblab_tech/pair-programming-guide-a76ca43ff389


Pair Programming Guide by Weblab – https://medium.com/@weblab_tech/pair-programming-guide-a76ca43ff389

https://medium.com/@weblab_tech/pair-programming-guide-a76ca43ff389


Williams, Laurie; Kessler, Robert R.; Cunningham, Ward; Jeffries, Ron (2000). "Strengthening the case for pair 
programming" (PDF). IEEE Software. 17 (4): 19–25. CiteSeerX 10.1.1.33.5248. doi:10.1109/52.854064.

Pair Programming is Embraced in Many Methodologies

http://sunnyday.mit.edu/16.355/williams.pdf
https://en.wikipedia.org/wiki/CiteSeerX
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.33.5248
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1109%2F52.854064


Tips for Pair Programming

• Switch roles frequently.
• No hard rules but every 20-30 minutes or after an individual feature is completed.

• Start with writing a failing test where it's possible to.

• Listen more than you talk. Ask questions more than command.

• Divide the load of thinking about levels of abstraction.
• Driver concerned with implementation details, compiling and correct code.
• Navigator concerned with higher-level: code organization, timeboxing, tests and functionality to add next.

• "Yes, and…" – accept your partner's line of thinking and carry out their thought experiment.

• Take breaks. Don't be that person and code while your partner is gone.

• After a session: reflect on what worked, what didn't, and how you felt the process went.



Aside on Software Development Methodologies

• Methodologies are like programming languages and belief systems…
• Humans canonize them, so they're inherently imperfect.
• Teams have their own interpretation of how to prioritize rules.
• There is no singular, obviously right methodology for everyone.

• "Be wary of a Gary" (the pit preacher)

• Be especially critical of people who believe they alone have the only answer to everything
• These people are often writing the books, blog posts, on speaker circuits, and so on

• What's important is thinking about your process and improving yourself with intent.
• Don't get too meta, though!
• Progress over process!

• Process is often easier to wax poetic about than the actual work of making forward progress.


	19 - Pair Programming.pdf
	Intro to Code Review.pdf

