little lanquagers

lecture 19:

Code Review
& Pair Programming

A little bit about myself...

Currently a senior majoring in computer science
and mathematics

e Interned at Google Mountain View (headquarters)
summers of 2017 and 2018

o Google Photos
o Google Image Search

What is Code Review

e You write some code, and then ask your peer to review it.

e The reviewer(s) reads your code,
o raises questions, and
o provides suggestions on how to improve the code

e Line-by-line basis
e Voluntary

o Anyone should be able to code review
o You do not have to follow any suggestions

Why Code Review?

e Improve code quality
o More eyes are more likely to catch more bugs
o “The sooner you find bugs, the better”
o Improve project reliability

e Promote responsibility of the author
o Logical correctness
o Readability

Why Code Review?

e Promote bi-directional mentoring and learning

e Promote openness in company culture
o Nothing is a secret
o Open to mistakes - everyone makes mistakes!

e Enforce uniform standard

Different Forms of Code Review

Formal tool
Over-the-shoulder

Email threads

Walkthroughs during meeting

Also may differ in terms of frequency, requirement, goals, etc.

Code Review at Google

e Every line of code to be submitted needs to pass the code review first.

AND YOU GET A GODE REVIEW
ANDYOU.GET.A CODE.REVIEW

'EVERYBODY'GETS A CODE REVIEW

Code Review at Google

e To pass the code review, need 2 LGTMs (LGTM = looks good to me)
o From an owner of the code section
o From a developer with the language readability for the reviewed code
m http://google.qgithub.io/stylequide/

http://google.github.io/styleguide/

Code Review at Google

. - o
Be Eot Vew Mstory Boskmarks Bols e
. S -Q2O0R [3 PRI (ICODreVIOn APPSPOL COMVBO2MT/A/2Y ;“@- Y
[Senan Boskmarks v
e Typically done throughaweb S S— .
100 rmo(hnrt I stopl, stoll > range objectin\ 109 “ranged [start,] stopl, snvh > range chyectin\
. ;rﬂ) Returns an iterator that generates the nusters in the range on desand.”). i of resters from start to
(OWVR 200800502 135247
interface o PN
u:wm a0 aritheetic projgressicn of rusbers fros start to stop {exclusive) by
o Thereviews that you sent out T

15 range_dealloc(rangeckject *r) 11¢ range_deatloc(rangecbject *rt
106 { 25 {

107 Py EGEF(rostart);
100 Py ORCRIF(r->ste0);
105 Py DECREF(r »step);

Py_DECREF(r.»starth;

116
17

118 . ;
a9 '1 CECREF (7 ->\ength)
118 Pycbject Delir); 120 Pytoject Delirh;

i
m 22

113 /¢ Return nusber of itess in range (10, Bi, stepl, whan stgumnts are 123 /* Raturn meber of tess in rasge (o, hi, step), when argeamnts are
114+ Pylnt of Pytong cbjects. step > O required. Retwrn a value < © if 124+ PyInt or Pyloog cbjects. step » 6 required. Return a valus < 8 1t
115+ Gonly if the true value is too Large to fit in a s3goed long 125 * Ganly 1f the true value is o0 large to fit in 3 signed long

116 * Argueents MUST return 1 with either PyLong Checki] o 126 * Argusents MIST return 1 with esther PyLong Oheck() or

117+ Pyiong Check(), Raturn -1 when there 15 40 error 127 _* Pytong Chacki). Retuen -1 whem there 3s a% error

[OVR 20080502 135247
ot your faslt, but this coment Sti1Y references Pylst vs, Pty cnes
“exther Pylong Check() or Pylong Check()* makes no sense (mes
wmmuu\ly changed in the past froa “Pylat_Check() or Mm_o«kt) Vi mind
fixing this?

Dene

m v 26 */
120 range i _ohjLrangecbject *r) | 00 mw":’ilmm.-z Sstert, Pylbject *stop, Pylbject *step) =l
R® fna [- - CImsech case

[Deee & e [ST

> x really don't want to wse m word sequence here. Miybe:
. > M-Nm7 m‘aan;:c progression of susbers from start
o The reviews that you need to do 753 5
:Dl static veid 113 static void

Picture from: https://www.quora.com/What-is-Googles-internal-code-review-policy-process

Live Demo

Let’'s do a real code review

https://qithub.com/QZHelen/CodeReview590

https://github.com/QZHelen/CodeReview590

Recap: Code Review at Google

Make edits to some code

When it is ready to submit, send it out to code reviewers (web interface)
Reviewers view diff

Potential back and forth communication, with the goal to reach an
agreement

e Finally, when the reviewers reply “Igtm”, you can submit your code!

My Personal Experience with Code Review

e It helped me get quickly familiar with software development at Google, and
taught me a lot new knowledge and practices.

e However, it will not always completely prevent errors.

Takeaways from Code Review

e As a developer, achieving the functionality is not the only goal.

o Readability
o Maintainability and extensibility
o Security

e Programming is never a lone work

o Involves constantly learning from others
o Communication everywhere

Questions?

References

e https://www.youtube.com/watch?v=sMal3Di4Kgc

https://www.youtube.com/watch?v=sMql3Di4Kgc

Pair Programming is... Programming in Pairs

* Two people collaborating synchronously on the same unit of code, usually
in person and with only one keyboard input.

* Often one person is the driver and the other is the navigator.
* Swapping roles with frequency is strongly encouraged.

* Why do people and organizations embrace pair programming?
* Improves quality of resulting code. Reduces time spent being stuck on small stuff.
* Promotes sharing of knowledge and improves ability to communicate about code.
* Increases confidence in and enjoyment of programming.

Not'sure It | love pair programming

I'm jusgionely

Pair Programming Guide by Weblab —
https://medium.com/@weblab tech/pair-programming-guide-a76ca43ff389

https://medium.com/@weblab_tech/pair-programming-guide-a76ca43ff389

“STRONG STYLE” PAIRING

In “strong style” pairing, the navigator makes all decisions. When the
driver needs to contribute an idea, they must relinquish the keyboard.

| HAVE AN | HAVE AN

R IDEA. PLEASE IDEA. PLEASE T
S il PASS THE TAKE THE
‘ KEYBOARD. KEYBOARD. ‘
\ \ ' \

Driver Navigator Driver Navigator

TRADITIONAL “STRONG STYLE"

SOURCE: https://twitter.com/jvmieghem/status/877820188040634368

Pair Programming Guide by Weblab —
://medium.com/@weblab tech/pair-programming-guide-a76ca43ff389

https://medium.com/@weblab_tech/pair-programming-guide-a76ca43ff389

“PING PONG” PAIRING

In “ping pong” pairing, the “write a failing test”, “make it pass”, “refactor”
loop of Test-Driven Development is used.

Partner 1 starts out as
the driver, writes a
failing test, and
transfers the key-
Partner 1 Partner 2 board to Partner 2.

WRITE A FAILING TEST

Partner 2 makes the test
pass, does any
refactoring, writes the
next failing test, and
transfers the keyboard to
Partner 1.

Partner 1 Partner 2

MAKE IT PASS, REFACTOR,
WRITE THE NEXT TEST

Partner 1 makes the test
pass, does any
refactoring, writes the
next failing test, and
transfers the keyboard to
Partner 1 Partner 2 Partner 2.

MAKE IT PASS, REFACTOR,
WRITE THE NEXT TEST

Pair Programming Guide by Weblab — https://medium.com/@weblab tech/pair-programming-guide-a76ca43ff389

https://medium.com/@weblab_tech/pair-programming-guide-a76ca43ff389

Pair Programming is Embraced in Many Methodologies

eXireme Programming is a software development method ' the discipline of writing tests first and the complementary,
T L T though quite distinct, dlSClphne of writing 5|mp|e solutions.
tail : - lmect their intentions to show clearly in the

!

code they write and refa

ry t I " A pariner who has been trackin
the programmer’s intention is well equipped to judge the
rogram’s expressiveness.
Developers confinuously integrate their work into a single
development thread, testing its health by running compre-
hensive unit tests. With each integration, the pair releases
ownership of their work to the whole team. At this point, dif-
ferent pairings can form if another combination of talent is
more appropriate for the next piece of work.

design methods. Pair programming fits well within XP for rea-
sons ranging from quality and productivity to vocabulary devel
opment and cross training. XP relies on pair programming so

heavily that it insists all production code be written by pairs.
~XP consists of a dozen practices appropriate for smalllo
midsize teams developing software with vague or changing re-
quirements. The methodology copes with change by delivering
software early and often and by absorbing feedback into the
development culture and ultimately info the code.

Several XP practices involve pair programming:
B Developers work on only one requirement at a time, usually To learn more, see Kent Beck’s book,' or consult the eXtreme

the one with the greatest business value as established by ~ Programming Roadmap at.xp.c2.com, where a lively commu-
the customer. Pairs form to interpret requirements or fo place Nity debates each XP practice.

Reference

1. K. Beck, eXtreme Programming Explained: Embrace Change,
Addison Wesley Longman, Reading, Mass., 2000.

Developers create unit tests for the code’s expected behavior
and then write the simplest, most straightforward implemen-
tations that pass their tests. Pairs help each other maintain

Williams, Laurie; Kessler, Robert R.; Cunningham, Ward; Jeffries, Ron (2000). "Strengthening the case for pair
programming" (PDF). IEEE Software. 17 (4): 19-25. CiteSeerX 10.1.1.33.5248. d0i:10.1109/52.854064.

http://sunnyday.mit.edu/16.355/williams.pdf
https://en.wikipedia.org/wiki/CiteSeerX
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.33.5248
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1109%2F52.854064

Tips for Pair Programming

e Switch roles frequently.
* No hard rules but every 20-30 minutes or after an individual feature is completed.

Start with writing a failing test where it's possible to.

* Listen more than you talk. Ask questions more than command.

Divide the load of thinking about levels of abstraction.
* Driver concerned with implementation details, compiling and correct code.
* Navigator concerned with higher-level: code organization, timeboxing, tests and functionality to add next.

* "Yes, and..." — accept your partner's line of thinking and carry out their thought experiment.
* Take breaks. Don't be that person and code while your partner is gone.

» After a session: reflect on what worked, what didn't, and how you felt the process went.

IN PAIRS

Aside on Software Development Methodologies PROGRAW

 Humans canonize them, so they're inherently imperfect.
* Teams have their own interpretation of how to prioritize rules.
* There is no singular, obviously right methodology for everyone.

 "Be wary of a Gary" (the pit preacher)
* Be especially critical of people who believe they alone have the only answer to everything
* These people are often writing the books, blog posts, on speaker circuits, and so on

 What's important is thinking about your process and improving yourself with intent.
 Don't get too meta, though!

* Progress over process!
* Process is often easier to wax poetic about than the actual work of making forward progress.

	19 - Pair Programming.pdf
	Intro to Code Review.pdf

