
© Kris Jordan 2019 - All Rights Reserved

Open PollEv.com/compunc
And have some paper / pencil out.

Regular Expressions Review

• Little Language to specify textual pattern matching.

• Fundamental Operators:
• Catenation / Concatenation - "AB" - A and then B
• Alternation / Union - "A|B" - A or B
• Closure / Zero or More - "A*" - Zero or more A

• Syntactical Sugar Operators:
• Zero-or-one: ?
• One-or-more: +

• You can compose Regular Expressions by combining operators.

Goal: Get a CPU to Process a Regular Expression

• Regular Expressions are a language for humans to express textual patterns.
• Computers inherently know nothing about regular expressions.

• Humans are very slow at processing large volumes of text precisely.
• Computers...

• How do we translate this human language into computational machinery?
• Machinery being loosely defined as data structures + algorithms.

• We need to rely on some formalism from the 1950s...

Transition Diagrams (Directed Graphs)

• You can represent regular expressions as transition diagrams, where:

• States are Nodes
• Represented as indexed circles
• A state captures everything you need to know at any point in the process

• Transitions are Directed Edges
• Represented as labeled, directed edges between nodes
• A transition bridges current state to the next state when input matches label.

• A Start node (Node 0 right) designates the initial state.

• Accepting node(s) (Node 3 right) designates success if, after processing the
input, it is the final state. Accepting or Final nodes are double circles.

Tracing a Transition Diagram

• Transition Diagram: Left

• Input String: "USC"

• When processing the input using the
transition diagram, does it end in the
accepting state 3?

Tracing a Transition Diagram

U S C

Before any input is considered, begin in the
starting state.

Tracing a Transition Diagram

U S C

Consider the next input character.

Is there a directed edge from the current state that is
labelled with this character?

Yes: Transition to the next state.

No: Not accepting! Failure to match input against
diagram.

Tracing a Transition Diagram

U S C

Consider the next input character.

Is there a directed edge from the current state that is
labelled with this character?

Yes: Transition to the next state.

No: Not accepting! Failure to match input against
diagram.

Tracing a Transition Diagram

• Transition Diagram: Left

• Input String: "UNCC"

• When processing the input using the
transition diagram, does it end in the
accepting state 3?

Tracing a Transition Diagram

U N C C

Before any input is considered, begin in the
starting state.

Tracing a Transition Diagram

U N C C

Consider the next input character.

Is there a directed edge from the current state that is
labelled with this character?

Yes: Transition to the next state.

No: Not accepting! Failure to match input against
diagram.

Tracing a Transition Diagram

U N C C

Consider the next input character.

Is there a directed edge from the current state that is
labelled with this character?

Yes: Transition to the next state.

No: Not accepting! Failure to match input against
diagram.

Tracing a Transition Diagram

U N C C

Consider the next input character.

Is there a directed edge from the current state that is
labelled with this character?

Yes: Transition to the next state.

No: Not accepting! Failure to match input against
diagram.

Tracing a Transition Diagram

U N C C

Consider the next input character.

Is there a directed edge from the current state that is
labelled with this character?

Yes: Transition to the next state. (Can be same state!)

No: Not accepting! Failure to match input against
diagram.

Tracing a Transition Diagram

U N C C

End of input?

Is the current state a final / accepting state?

Yes: Match!

No: Not a match :(

• Generate two strings that fail to match the DFA above.

1. The first string should be at least length 3 and fail in state number 2.

2. The second string should be at least length 4 and fail in state number 4.

• Submit your strings on PollEv.com/compunc

Transition Diagrams are Visual Representations of
Deterministic Finite Automata (DFA) - Machines!

• DFA are formally specified with a set theoretical 5-tuple M = (Q, ∑, ∆, q0, F)
• Q is a set of states (above 0, 1, 2, 3) - our nodes
• ∑ is the alphabet (above U, N, S, C) - set of all labels
• ∆ is a transition function (Q, ∑) -> Q - labeled edges
• q0 is the start state (above 0)
• F is the set of accepting states (above 3) - double circled nodes

• Since DFA are specified in discrete terms (sets, functions, alphabets, strings) you're:
1. Able to represent the states and transition functions as a graph data structure in memory
2. Able to process input string algorithmically as a program
3. Able to rigorously prove soundness and properties (COMP455 - Models of Language)

DFA to Regular Expression

U (N|S) C C*

Equivalence of Regular Expression (RE) and DFA

• Stephen Kleene proved in 1951 that
Regular Expressions and
Deterministic Finite Automata are in
the same equivalence class.
• Everything you can express in one you

can express in the other and vice-versa!

• Formal proofs such as this are the
emphasis of COMP455.

ε-Transition Diagrams

• ε-transitions are edges that match the empty string

• This is a funny concept that simply means as soon as you reach a state with an ε-
transition you follow it immediately

• Thus, as you're processing input you may be in multiple states at the same time!

• By introducing εpsilon-transitions our state machines become non-deterministic

Tracing an ε-Transition Diagram

U N C

Before any input is considered, begin in the
starting state.

Tracing an ε-Transition Diagram

U N C

Consider the next input character.

Is there a directed edge from the current state that is labelled with
this character?

Or is there an ε-transition?

Yes: Transition to the next state.

No: Not accepting! Remove possible state from diagram and if no
states remain, fail to match.

Tracing an ε-Transition Diagram

U N C

Different from tracing a DFA:

After a transition, are there any ε-transitions
from the current state to other states?

Yes! Follow each of those states

Tracing an ε-Transition Diagram

U N C

• Notice you're in two states simultaneously!
• Currently both 2 and 3.

• This is where non-determinism arises.
• You can't actually know which (if any) are leading you toward an

accepting state and your machine is in multiple states at the same
time.

• From here we resume normal algo from all active states.

Tracing an ε-Transition Diagram

U N C

Consider the next input character.

Is there a directed edge from the current state that is
labelled with this character? Or is there an ε-transition?

Yes: Transition to the next state.

No: Not accepting! Remove possible state from diagram and
if no states remain, fail to match.

Tracing an ε-Transition Diagram

U N C

Consider the next input character.

Is there a directed edge from the current state that is
labelled with this character? Or is there an ε-transition?

Yes: Transition to the next state.

No: Not accepting! Failure to match input against diagram.

Tracing an ε-Transition Diagram

U N C

End of input?

Is any state in a final / accepting state?

Yes: Match!

No: Not a match :(

Generate a string of length 4 accepted
by this ε-Transition Diagram

Done? Submit it on PollEv.com/compunc

Equivalence of DFA and NFA ... and RE

• Rabin and Scott introduced and proved
non-deterministic finite automata are
equivalent to deterministic finite
automata in 1959.
• Everything you can express in one you can

express in the other and vice-versa!

• Therefore regular expressions and non-
deterministic finite automata are equivalent,
as well!

• This is important because NFAs are easily
constructed from Regular Expressions

Thompson's RegEx -> NFA Construction Algo

• Ken Thompson, (aka Gandolf the Grey) published the foundational
ideas behind grep in 1968.

Thompson's Construction: Preview

Classic Time-Space Trade-off of DFA vs. NFA

Representation
(Space)

Simulation
(Time)

NFA O(m) O(m2n)

DFA O(2m) O(n)

Where m is number of states in an NFA representation and
n is length of input string.

