little lanquagers

lecture 20:

RegularExpressions &
fluvtomata

Open PollEv.com/compunc

And have some paper / pencil out.

O Kris Jerdaim2019 - AllRights Resenved




Regular Expressions Review

e Little Language to specify textual pattern matching.

 Fundamental Operators:
e Catenation / Concatenation - "AB" - A and then B
 Alternation / Union-"A|B"-AorB
* Closure / Zero or More - "A*" - Zero or more A

* Syntactical Sugar Operators:
e /Zero-or-one: ?
* One-or-more: +

* You can compose Regular Expressions by combining operators.



Goal: Get a CPU to Process a Regular Expression

* Regular Expressions are a language for humans to express textual patterns.
* Computers inherently know nothing about regular expressions.

* Humans are very slow at processing large volumes of text precisely.
* Computers... .~ 2

- - |
\'ZJ/

* How do we translate this human language into computational machinery?
 Machinery being loosely defined as data structures + algorithms.

* We need to rely on some formalism from the 1950s...



Transition Diagrams (Directed Graphs)

* You can represent regular expressions as transition diagrams, where:

 States are Nodes
* Represented as indexed circles
* A state captures everything you need to know at any point in the process

* Transitions are Directed Edges
* Represented as labeled, directed edges between nodes
* A transition bridges current state to the next state when input matches label.

* A Start node (Node O right) designates the initial state.

» Accepting node(s) (Node 3 right) designates success if, after processing the
input, it is the final state. Accepting or Final nodes are double circles.

start

(e (===



start

(e (===

Tracing a Transition Diagram

* Transition Diagram: Left
* Input String: "USC"

* When processing the input using the
transition diagram, does it end in the
accepting state 37



start

@OQZGG

Tracing a Transition Diagram

U s C_

v

Before any input is considered, begin in the
starting state.



start

Tracing a Transition Diagram

v

U s C_

Consider the next input character.

N
Is there a directed edge from the current state that is
labelled with this character?

¢ Yes: Transition to the next state.

No: Not accepting! Failure to match input against
@ diagram.



start

Tracing a Transition Diagram

0 A4

U s C_

Consider the next input character.

Is there a directed edge from the current state that is
labelled with this character?

Yes: Transition to the next state.

No: Not accepting! Failure to match input against
@ diagram.



start

@ 2 -
U

Tracing a Transition Diagram

* Transition Diagram: Left
* Input String: "UNCC"

* When processing the input using the
transition diagram, does it end in the
accepting state 37



start

Tracing a Transition Diagram

U N _C_C_

v

Before any input is considered, begin in the
starting state.



start

Tracing a Transition Diagram

v
U N _C_C_

Consider the next input character.

s

Is there a directed edge from the current state that is
labelled with this character?

Yes: Transition to the next state.
No: Not accepting! Failure to match input against

C
@' diagram.



start

Tracing a Transition Diagram

v
U N _C_C_

Consider the next input character.

Is there a directed edge from the current state that is
labelled with this character?

Yes: Transition to the next state.

No: Not accepting! Failure to match input against
diagram.




start

Tracing a Transition Diagram

v
U N _C_C_

Consider the next input character.

(==

s

Is there a directed edge from the current state that is
labelled with this character?

Yes: Transition to the next state.

No: Not accepting! Failure to match input against
diagram.




start

Tracing a Transition Diagram

v
U N _C_C_

Consider the next input character.

Is there a directed edge from the current state that is
labelled with this character?

Yes: Transition to the next state. (Can be same state!)

No: Not accepting! Failure to match input against
diagram.

(D=
@ 2 -

¥

O




start

(D=
@ 2 -

¥

O

Tracing a Transition Diagram

v
U N _C_C_

End of input?

Is the current state a final / accepting state?

Yes: Match!
No: Not a match :(




start

e Generate two strings that fail to match the DFA above.
1. The first string should be at least length 3 and fail in state number 2.
2. The second string should be at least length 4 and fail in state number 4.

* Submit your strings on PollEv.com/compunc



Transition Diagrams are Visual Representations of
Deterministic Finite Automata (DFA) - Machines!

C
start ° : OG - @
* DFA are formally specified with a set theoretical 5-tuple M =(Q, 3, A, q,, F)
* Qis a set of states (above 0, 1, 2, 3) - our nodes
* 5 is the alphabet (above U, N, S, C) - set of all labels
* Ais a transition function (Q, >) -> Q - labeled edges

* q,is the start state (above 0)
* Fisthe set of accepting states (above 3) - double circled nodes

 Since DFA are specified in discrete terms (sets, functions, alphabets, strings) you're:
1. Able to represent the states and transition functions as a graph data structure in memory
2. Able to process input string algorithmically as a program
3. Able to rigorously prove soundness and properties (COMP455 - Models of Language)



DFA to Regular Expression




Equivalence of Regular Expression (RE) and DFA

e Stephen Kleene proved in 1951 that o AIRAORSE
Regular Expressions and PROJECT RAND
DeterminiStiC.Finite Automata are in RESEARCH MEMORANDUM
the same equivalence class.
* Everything you can express in one you /
can express in the other and vice-versa! REPRESENTATION OF EVENTS IN NERVE NETS AND
FINITE AUTOMATA
* Formal proofs such as this are the n
emphasis of COMP455. SRR s
RM-T04

15 December 1951

OB X




e-Transition Diagrams

start

e e-transitions are edges that match the empty string

* This is a funny concept that simply means as soon as you reach a state with an &-
transition you follow it immediately

* Thus, as you're processing input you may be in multiple states at the same time!

* By introducing gpsilon-transitions our state machines become non-deterministic




start

Tracing an e-Transition Diagram

v
U N C

Before any input is considered, begin in the
starting state.




start

Tracing an e-Transition Diagram

SN

Consider the next input character.

Is there a directed edge from the current state that is labelled with
this character?

Or is there an s-transition?

Yes: Transition to the next state.

No: Not accepting! Remove possible state from diagram and if no
states remain, fail to match.




start

Tracing an e-Transition Diagram

SN

Different from tracing a DFA:

After a transition, are there any e-transitions
from the current state to other states?

@ Yes! Follow each of those states




start

Tracing an e-Transition Diagram

C

* Notice you're in two states simultaneously!
* Currently both 2 and 3.

* This is where non-determinism arises.

* You can't actually know which (if any) are leading you toward an
accepting state and your machine is in multiple states at the same
time.

* From here we resume normal algo from all active states.



start

Tracing an e-Transition Diagram

U

Consider the next input character.

Is there a directed edge from the current state that is
labelled with this character? Or is there an e-transition?

Yes: Transition to the next state.

No: Not accepting! Remove possible state from diagram and
if no states remain, fail to match.




start

Tracing an e-Transition Diagram

Consider the next input character.

Is there a directed edge from the current state that is
labelled with this character? Or is there an e-transition?

Yes: Transition to the next state.

No: Not accepting! Failure to match input against diagram.




start

Tracing an e-Transition Diagram

v

U N C_

End of input?

Is any state in a final / accepting state?

Yes: Match!
No: Not a match :(




Generate a string of length 4 accepted
by this e-Transition Diagram

0O

A ()

Done? Submit it on PollEv.com/compunc



Equivalence of DFA and NFA ...

* Rabin and Scott introduced and proved
non-deterministic finite automata are
equivalent to deterministic finite
automata in 1959.

* Everything you can express in one you can
express in the other and vice-versa!

* Therefore regular expressions and non-
deterministic finite automata are equivalent,

as well!

* This is important because NFAs are easily
constructed from Regular Expressions




Thompson's RegEx -> NFA Construction Algo

* Ken Thompson, (aka Gandolf the Grey) published the foundational
ideas behind grep in 1968.

regular expressions. The second stage converts the regular
expression to reverse Polish form. The third stage is the
object code producer. The first two stages are straight-
forward and are not discussed. The third stage expects a
syntactically correct, reverse Polish regular expression.,
The regular expression a(b | ¢)*d will be carried through
as an example. This expression is translated into abe| * - d -
by the first two stages. A functional description of the



The heart of the third stage 1s a pushdown stack. Each
entry in the pushdown stack is a pointer to the compiled
code of an operand. When a binary operator (‘| or “-”)
1s compiled, the top (most recent) two entries on the stack
are combined and a resultant pointer for the operation re-
places the two stack entries. The result of the binary
operator 1s then available as an operand 1n another opera-
tion. Similarly, a unary operator (“*’’) operates on the top
entry of the stack and creates an operand to replace that
entry. When the entire regular expression i1s compiled,
there is just one entry in the stack, and that is a pointer to

the code for the regular expression.



Thompson's Construction: Preview

o] ud




Classic Time-Space Trade-off of DFA vs. NFA

Representation Simulation
(Space) (Time)

NFA O(m) O(m?n)

DFA o(2™M) O(n)

Where m is number of states in an NFA representation and
nis length of input string.



