little lanquagers

lecture 21

Modeling NFAs

O Kris Jordai2019 - AllRights Resenved



Graphs of Pointers in Unmanaged Languages

start

* Suppose each of the edges in the transition diagram above is a pointer

* In Rust ownership terminology, who owns nodes 3 and 4?

* Graphs of pointers with cycles require careful consideration when freeing
memory after the data structure is no longer needed. Why?



Region-based Memory Management "Arenas”

e Rather than thinking about allocating and deallocating in terms of individual nodes,
region-based management reframes the problem.

* Key Applicability Questions
* Once initialized, does your data structure need to be able to expand/contract?
* Do elements of the data structure need lifetimes independent of the structure's?

* |If no to those questions, then memory management is simplified by allocating a
contiguous region for the entire structure rather than individually per node.

* This region or "arena" can then be deallocated all at once in one step.

* Our Motivation: To implement a regular expression engine, once our NFA graph is
initialized it's final and we do not need nodes for longer than the graph.



Vectors as a simple Arena Allocator

 Rust has libraries for assisting with Region-based / Arena Allocation
* Rather than learning their nuances, we'll employ a rudimentary approach: a Vector.

 Our memory "Arena" will be a Vector of States
* Thus, each state has an identifier ("id") that is its index in the vector.
 States will refer to each other via this identifier rather than by memory address.

* This added level of indirection has trade-offs. Fundamental ones:
1. Cost: Indirection. Lookups must compute address with vector start + id offset * size.
2. Benefit: Locality. All states are located nearby each other in a region of memory.



State Node Primitives in Thompson's Construction

* Theoretical NFAs have no constraints on the numbers of edges relating nodes
nor the use of e-transitions.

* Big CS Idea: Representing abstract concepts with no constraints is made
tractable by designing highly constrained, yet easily composed primitives.

* The genius of Thompson's Construction is its distillation of the representation:
Only two kinds of primitive States are needed to composed any NFA.

* Source: https://www.fing.edu.uy/inco/cursos/intropln/material/p419-thompson.pdf



https://www.fing.edu.uy/inco/cursos/intropln/material/p419-thompson.pdf

State Primitives in Thompson's NFA Construction

<char> A Match State matches a single char.
(Thompson's "NNODE")
€
€

A Split State splits the search path.
(Thompson's "CNODE")

* From these 2 fundamental states you can compose any NFA!
* We'll also have trivial sentinel states for start/end.



Hands-on: Draw a transition diagram for a(b|c)*d
using only these State primitives:

Match Split

€
Label>
E



MOde“ng in Stateld = usize;

Rust State {
Start(Option<Stateld>),

Match(Label, Option<Stateld>),

Split(Option<StateId>, Option<Stateld>),
End,

Match Split

E
Label
start =—————— ¢H< — C)
E

* Note Stateld is simply a type alias for the vector index of any State in our arena.



Code Walk: Let's Explore the Skeleton Code

* NFA struct is simply a Vec<State> and starting Stateld (0)

* It has an add(s: State) method that takes ownership of the State, pushes it into the Vec,
and returns its Stateld

* It also has a join(from: Stateld, to: Stateld) method that replaces a dangling None edge of
states[from] with Some(to).

 When joining a Split state, it only joins the 2nd Stateld tuple member and assumes the 1st
is always known (and in Thompson's construction, it is).

e State Enum (shown previously)
e Char Enum (either Literal(char) or Any)

* Helper functions for debugging:
* nfa_dump generates a string representation of the NFA's States
* nfa_dot generates a dot GraphViz representation of the NFA



alle

Figure 1 shows the functions of the third stage of the
compiler in translating the example regular expression.
The first three characters of the example a, b, ¢, each
create a stack entry, S[¢], and an NNODLE box.

a b c

Fia. 1

Source: Thompson '68. Communications of the ACM.
Programming Techniques: Reqular expression search algorithm.
https://www.fing.edu.uy/inco/cursos/intropln/material/p419-thompson.pdf



https://www.fing.edu.uy/inco/cursos/intropln/material/p419-thompson.pdf

The next character “+” combines the operands b and c
with a CNODE to form b|c as an operand. (See Figure 2.)

s(0) s(1) o

bic

F1a. 2

Source: Thompson '68. Communications of the ACM.
Programming Techniques: Reqular expression search algorithm.
https://www.fing.edu.uy/inco/cursos/intropln/material/p419-thompson.pdf



https://www.fing.edu.uy/inco/cursos/intropln/material/p419-thompson.pdf

The next character “*’’ operates on the top entry on the
stack. The closure operator is realized with a CNODE by
noting the identity X* = A|XXx, where X is any regular
expression (operand) and X is the null regular expression.
(See Figure 3.)

w7 s

a (ble)*

Fia. 3

Source: Thompson '68. Communications of the ACM.
Programming Techniques: Reqular expression search algorithm.
https://www.fing.edu.uy/inco/cursos/intropln/material/p419-thompson.pdf



https://www.fing.edu.uy/inco/cursos/intropln/material/p419-thompson.pdf

The next character “-”’ compiles no code, but just
combines the top two entries on the stack to be executed
sequentially. The stack now points to the single operand
a- (blc)*. (See Figure 4.)

D
s9—(s —e(D—(>

a-(b|e) ¥

Fig. 4

Source: Thompson '68. Communications of the ACM.
Programming Techniques: Reqular expression search algorithm.
https://www.fing.edu.uy/inco/cursos/intropln/material/p419-thompson.pdf



https://www.fing.edu.uy/inco/cursos/intropln/material/p419-thompson.pdf

The final two characters d- comvpile and connect an

NNODE onto the existing code to produce the final regu-
lar expression in the only stack entry. (See Figure 5.)

so—_e )

Source: Thompson '68. Communications of the ACM.
Programming Techniques: Reqular expression search algorithm.
https://www.fing.edu.uy/inco/cursos/intropln/material/p419-thompson.pdf



https://www.fing.edu.uy/inco/cursos/intropln/material/p419-thompson.pdf

m.add(Match(Char::Literal('a'), None));
m.add(Match(Char::Literal('b"'), None));
m.add(Match(Char::Literal('c'), None));
or ¢ = m.add(Split(Some(b), Some(c)));
star = m.add(Split(Some(b _or_c), None));
.join(b, star);
.join(c, star);

.join(a, star);

d = m.add(Match(Char::Literal('d"), None));

.join(star, d);

.join(m.start, a);
end = m.add(End);
.join(d, end);



