
© Kris Jordan 2019 - All Rights Reserved

We will be using 590-materials on VM today.

Graphs of Pointers in Unmanaged Languages

• Suppose each of the edges in the transition diagram above is a pointer

• In Rust ownership terminology, who owns nodes 3 and 4?

• Graphs of pointers with cycles require careful consideration when freeing
memory after the data structure is no longer needed. Why?

Region-based Memory Management "Arenas"
• Rather than thinking about allocating and deallocating in terms of individual nodes,

region-based management reframes the problem.

• Key Applicability Questions
• Once initialized, does your data structure need to be able to expand/contract?

• Do elements of the data structure need lifetimes independent of the structure's?

• If no to those questions, then memory management is simplified by allocating a
contiguous region for the entire structure rather than individually per node.
• This region or "arena" can then be deallocated all at once in one step.

• Our Motivation: To implement a regular expression engine, once our NFA graph is
initialized it's final and we do not need nodes for longer than the graph.

Vectors as a simple Arena Allocator

• Rust has libraries for assisting with Region-based / Arena Allocation
• Rather than learning their nuances, we'll employ a rudimentary approach: a Vector.

• Our memory "Arena" will be a Vector of States
• Thus, each state has an identifier ("id") that is its index in the vector.

• States will refer to each other via this identifier rather than by memory address.

• This added level of indirection has trade-offs. Fundamental ones:
1. Cost: Indirection. Lookups must compute address with vector start + id offset * size.

2. Benefit: Locality. All states are located nearby each other in a region of memory.

State Node Primitives in Thompson's Construction

• Theoretical NFAs have no constraints on the numbers of edges relating nodes
nor the use of ε-transitions.

• Big CS Idea: Representing abstract concepts with no constraints is made
tractable by designing highly constrained, yet easily composed primitives.

• The genius of Thompson's Construction is its distillation of the representation:
Only two kinds of primitive States are needed to composed any NFA.

• Source: https://www.fing.edu.uy/inco/cursos/intropln/material/p419-thompson.pdf

https://www.fing.edu.uy/inco/cursos/intropln/material/p419-thompson.pdf

State Primitives in Thompson's NFA Construction

• From these 2 fundamental states you can compose any NFA!
• We'll also have trivial sentinel states for start/end.

Qmatch

<char>

Qsplit

ε

ε

A Match State matches a single char.
(Thompson's "NNODE")

A Split State splits the search path.
(Thompson's "CNODE")

Hands-on: Draw a transition diagram for a(b|c)*d
using only these State primitives:

Qc

<Label>

Qε

ε

ε
start End

Match Split

Modeling in
Rust

type StateId = usize;

enum State {
Start(Option<StateId>),
Match(Label, Option<StateId>),
Split(Option<StateId>, Option<StateId>),
End,

}

Qc

<Label>

Qε

ε

ε
start End

Match Split

• Note StateId is simply a type alias for the vector index of any State in our arena.

Code Walk: Let's Explore the Skeleton Code

• NFA struct is simply a Vec<State> and starting StateId (0)
• It has an add(s: State) method that takes ownership of the State, pushes it into the Vec,

and returns its StateId
• It also has a join(from: StateId, to: StateId) method that replaces a dangling None edge of
states[from] with Some(to).

• When joining a Split state, it only joins the 2nd StateId tuple member and assumes the 1st
is always known (and in Thompson's construction, it is).

• State Enum (shown previously)

• Char Enum (either Literal(char) or Any)

• Helper functions for debugging:
• nfa_dump generates a string representation of the NFA's States
• nfa_dot generates a dot GraphViz representation of the NFA

Source: Thompson '68. Communications of the ACM.
Programming Techniques: Regular expression search algorithm.
https://www.fing.edu.uy/inco/cursos/intropln/material/p419-thompson.pdf

https://www.fing.edu.uy/inco/cursos/intropln/material/p419-thompson.pdf

Source: Thompson '68. Communications of the ACM.
Programming Techniques: Regular expression search algorithm.
https://www.fing.edu.uy/inco/cursos/intropln/material/p419-thompson.pdf

https://www.fing.edu.uy/inco/cursos/intropln/material/p419-thompson.pdf

Source: Thompson '68. Communications of the ACM.
Programming Techniques: Regular expression search algorithm.
https://www.fing.edu.uy/inco/cursos/intropln/material/p419-thompson.pdf

https://www.fing.edu.uy/inco/cursos/intropln/material/p419-thompson.pdf

Source: Thompson '68. Communications of the ACM.
Programming Techniques: Regular expression search algorithm.
https://www.fing.edu.uy/inco/cursos/intropln/material/p419-thompson.pdf

https://www.fing.edu.uy/inco/cursos/intropln/material/p419-thompson.pdf

Source: Thompson '68. Communications of the ACM.
Programming Techniques: Regular expression search algorithm.
https://www.fing.edu.uy/inco/cursos/intropln/material/p419-thompson.pdf

https://www.fing.edu.uy/inco/cursos/intropln/material/p419-thompson.pdf

// a
let a = m.add(Match(Char::Literal('a'), None));
// b
let b = m.add(Match(Char::Literal('b'), None));
// c
let c = m.add(Match(Char::Literal('c'), None));
// |
let b_or_c = m.add(Split(Some(b), Some(c)));
// *
let star = m.add(Split(Some(b_or_c), None));
m.join(b, star);
m.join(c, star);
// ·
m.join(a, star);
// d
let d = m.add(Match(Char::Literal('d'), None));
// ·
m.join(star, d);
// Finalize by connecting start and end
m.join(m.start, a);
let end = m.add(End);
m.join(d, end);

