
© Kris Jordan 2019 - All Rights Reserved

VM day today!
Pull 590-material from upstream.

What happens when a process ends?

• Generally, the operating system reclaims the process' resources
• Allocated memory

• Open file handles

• Open network sockets

• Any other resource mediated by the OS

• The dying process also gives an Exit Status back to the operating system
• Also commonly called an Exit Code or Result Code

• The operating system signals this exit code back to its dying process' parent

• The exit status of the last process run in a shell is stored in the variable $?
• When you run a process in the Bash shell, the shell is its parent

• When the process ends, the shell is notified of its exit status and stores it in $?

Hands-on: Finding Exit Statuses

• Navigate to lecture/26-exit-status/exit_statuses

• This is a simple Rust project. Check its main.rs file and run it.

• Investigate its exit status after running the program by echoing the special variable: echo $?

• Respond on PollEv.com/compunc with the exit status, then:

1. Change your program to panic! and check the exit status

2. Change your program to exit with std::process::exit(590);

• Respond on PollEv with those exit statuses, as well.

An Exit Status lets the parent process know if
its child successfully completed its task or not

• Processes normally exit with a status of 0

• When a process exits abnormally, a non-zero status should be used

• Why does 0 mean "OK"?
• Programs can typically fail in lots of ways so other status codes can be used by the programs

themselves to convey why they may have failed to a parent

• What do codes > 0 mean
• Exit statuses are program specific – check their manual page
• 1 is commonly used for general errors and sometimes expected errors

• For example, grep's exit status is 1 if no matches were found
• >=126 should be considered reserved by the system

• For example, exiting a process with Ctrl+C exits with status 130

Aside: true and false commands

• In most *nix systems, there are two command-line applications for playing
with exit status handling:

• true – exits with status 0

• false – exits with status 1

Aside: Conditional Command Sequencing

• In Bash, if you separate commands with:

; - all of the commands run sequentially

&& - the right-hand side command only runs if left-hand side exit status is 0

|| - the right-hand side command only runs if left-hand side exit status is != 0

A common idiom for simple "if success this, else that" is to combine && and ||:

command && echo "success case" || echo "failure case"

When do exit statuses matter?

• When you write a program or script that depends on other processes
or scripts completing successfully

• Just like composing pipelines of processes is powerful, so too is
building systems of coordinated processes to automate bigger jobs

• Scenarios where you want to understand exit statuses:
• Managing child processes in general purposed languages - "Shelling out"

• Shell scripting – "duct-taping" a number of CLI applications together

Shelling out in Rust

• Rust's std::process package is for working with child processes

• The Command struct enables you to build a child process by:
• Specifying the programs name (to be found in $PATH)

• Adding command-line arguments to program

• Optionally controlling stdin/stdout/stderr

• Spawning, waiting, and capturing Exit Status and (optionally) stdout/stderrerr

• For complete documentation see:
• https://doc.rust-lang.org/std/process/index.html

https://doc.rust-lang.org/std/process/index.html

use std::str;
use std::process::{Command, Stdio};

fn main() {

let child = Command::new("ls")
.arg("-l")
.arg("-h")
.stdout(Stdio::piped()) // Capture stdout rather than print to terminal
.spawn() // Begin the process
.expect("Failed to start process"); // If failed, panic!

if let Ok(output) = child.wait_with_output() { // Wait for proc to complete
println!("===");
println!("Status: {}", output.status);
println!("===");
println!("Stdout: {}", str::from_utf8(&output.stdout).unwrap());

} else {
eprintln!("Failed to wait on child.");

}
}

Developer Operations - DevOps

• It used to be software engineering and systems operations were separate and distinct
roles

• Modern service-oriented architectures depend heavily on many systems
• Web servers and databases are CLI-operated processes that run in the background
• Build tools (like cargo and npm) are CLI-driven tools that coordinate other CLI tools
• Continuous integration systems orchestrate sequences of tasks to test, build, and package your project

per commit
• Deployment systems transfer your builds to production servers and initiate sequences of steps to take

the old version out of commission and roll-over to the new version

• Most modern software engineering projects heavily rely upon many CLI tools

• In the last 10 years a new type of role emerged. Developer Operations combines:
1. The know-how of a computer scientist and software engineer
2. The know-how of a systems architect and implementor

Bash's if-then-else grammar

if-statement ::= "if" "[" expr "]" "then" statements* else-statement? "fi"

else-statement ::= "else" statements*

• Example:

if [$SOME_NUM_VAR -eq 0]
then
echo "Equals 0"

else
echo "Not equal to 0

fi

There's Sun on the Horizon

• Weather.gov provides a textual weather forecast online:
• https://forecast.weather.gov/MapClick.php?lat=35.9082&lon=-

79.0459&unit=0&lg=english&FcstType=text&TextType=1

• How about we script the following:
1. Grab its contents

2. Convert it to markdown to simplify textual analysis

3. Use egrep to search for "sun"

4. If exit code status is:
• 0 - match found! Echo a special message about happy days and print matches.

• 1 - no matches found. Echo an uplifting message.

https://forecast.weather.gov/MapClick.php?lat=35.9082&lon=-79.0459&unit=0&lg=english&FcstType=text&TextType=1

#!/bin/bash

URL="https://forecast.weather.gov/MapClick.php?lat=35.9082&lon=-
79.0459&unit=0&lg=english&FcstType=text&TextType=1"

FORECAST=$(curl --silent $URL | pandoc --wrap=none -f html -t markdown | egrep --ignore-case 'sun[^d]')
SUN_STATUS=$?

echo "======="
if [$SUN_STATUS -eq 0]
then

echo "Sunshine is on the horizon!"
echo "======="
echo "$FORECAST"

else
echo "There's no sun this week but you're radiant so ¯_(ツ)_/¯"

fi
echo "======="

