little lanquagers

lecture 27

r) Soe
Operator Overloading

VM day today!

Update Rust: S rustup update
Pull 590-material from upstream.

O Kris Jerdafim2019 - AllgRights Resenved

Let's Implement a Rational Number Module

* A rational number is made of two integers: numerator
numerator, denominator

denominator

* Arithmetic operators can be applied to
rational numbers:

ni + np, nids+nyd
d_] d_g o ﬂrldg ?
1 n n]dg—ﬂgd]
d dy T didy
ny n, __ nin
di d, didy’

I3 /d] . I’I]dg
(%) /dg d[f’tg ’

Warm-up: Simplity Rationals

* Open:
» 27-operator-overloading/src/main.rs
» 27-operator-overloading/src/rational.rs

* Notice two Rational objects are constructed and printed...
e ...they're not simplified, though!

* Fix the constructor so that all Rational objects are simplified upon
construction.

* Check-in on PollEv.com/compunc when complete and then think through
how you would write an add method to add two Rationals together.

Operators on Complex Data Types

» Some data types are well suited to use operators like +, -, *, /:
e Rational numbers
* Vectors in the mathematical sense
* Matrices
* Data tables

* Relational operators like ==, <, >, etc. are commonly useful, as well

* Most programming languages you've used do not allow you to extend
the meaning of operators dependent on their usage

* For example, to test equality of Strings in Java you say sl.equals(s2) ... yuck

Operator Overloading

 Some languages allow you to define the meaning of operators on user defined types:
e C++, C#, Python, Rust, Ruby, and many others

* Suppose you're defining a type T and have two objects aand b of type T
* In your programs you'd like to be able to write: a + b ... how is this made possible?

* General strategy for operator overloading:
1. You add specifically named and typed methods to your data type T

2. When the compiler reaches an addition expression LHS is of type T, it
* Looks to see if T has the specially named method defined on it. If not, error.
* |If so, substitute a + b with a.specialMethod(b)
* This idea of "magic method calls" is pervasive with toString methods even in Java

* Each language that supports operator overloading has its own conventions for
implementing.

Operator Overloading in Rust

* We'll take a high-level pass at operator
overloading. Full detail in Ch 12.

* Many operators can be overloaded. The

book's table 12-1 (right) is a great reference.

* Each operator you want to overload has its
own trait. You must implement this trait for
the left-hand side's type.

Table 12-1. Summary of traits for operator overloading

Unary operators std::ops::Neg 2he
std::ops::Not 1 .
Arithmetic operators ~ std: :ops: :Add X +y
std::ops::Sub X -y
std::ops::Mul X *y
std::ops::Dlv x /[y
std::ops::Rem X %Y
Bitwise operators std::ops::BitAnd x &y
std::ops::BitOr x|y
std::ops::BitXor X"y
std::ops::Shl X <<y
std::ops::Shr X >y
Compound assignment std: :ops: :AddAssign X += ¥y
arithmetic operators gtd: :ops: :SubAssign X -= ¥
std::ops::MulAssign X *=y
std::ops::DivAssign X [=y
std::ops::RemAssign X %=y
Compound assignment std::ops::BitAndAssign x &= y
bitwise operators std::ops::BitOrAssign x |=y
std::ops::BitXorAssign x "=y
std::ops::ShlAssign X <<=y
std::ops::ShrAssign X >>= ¥y
Comparison std::cmp::Partialkq X == y,x l=y
std::cmp::Partialord x <y, x <= y, X > ¥, X > ¥
Indexing std::ops::Index x[y], &x[y]
std::ops::IndexMut x[y] = z, &mut x[ﬂ_________

Follow-along: Overload the Multiplication Operator

* The multiplication operator's trait is Mul

Let's implement it for Rational as shown below

Notice the mul method's self is the left-hand side rational and the right-hand
side rational is the second parameter of the method.

Output is the associated type specifying the return type of the operator.

Mul Rational {
Output = Rational;
mul(self, rhs: Rational) -> Rational {

Rational::from(self.n * rhs.n, self.d * rhs.d)

Now, in main, let's try multiplying our two Rationals together.

Hands-on: Implement the Addition Operator
* Add another impl block Add for Rational.

* |t should look exactly like Mul's except the function's name is add.

* Implement the arithmetic to return a Rational that's: Ihs + rhs
* Try using the addition operator in main to test its correctness.

* Check-in when your overloaded addition is working.

Add Rational {
Output = Rational;
add(self, rhs: Rational) -> Rational {

Rational: : from(
self.n * rhs.d + rhs.n * self.d,

self.d * rhs.d,

Follow-along: Operating on Different Types

 What if we wanted to be able to add an i64 with a Rational?
* The default impl of traits assumes the same type for LHS and RHS.

* You can override the RHS with a generic type on the Trait. For example:

Add<Rational> i64 {
Output = Rational;
add(self, rhs: Rational) -> Rational {

Rational: :from(self, 1) + rhs

¥
¥

Hands-on: Addition for Rational + i64
* Add another impl block Add for Rational.

* Instead of overloading addition for i64 + Rational it should overload
for Rational + i64.

* Come up with an example to test in main.

* Check-in when your code is working!

Preview: Implementing a Macro

We currently construct Rationals via the Rational::from static method

For example: Rational: :from(1, 2)

Wouldn't it be nice if we could express a Rational more naturally?

Perhaps something like: rat! (1 / 2)

With afunct/on thls IS generaIIY impossible because the 1 / 2 expression is evaluated
before the "rat! function" would be called.

* With a macro, because macros are expanded in an early stage compilation, we can
match agamst the three tokens (1, /, 2) and rewrite a substitution using those tokens.

Defining a simple macro

* Macros preprocess your source code to make substitutions before compilation
* They're a deep subject with lots of nuances covered in Chapter 20

* To make any sense of macros requires understanding tokens and parse trees

* In Rust, a macro definition specifies patterns of tokens or AST nodes to match
* Those tokens / AST nodes are then substituted into a template of Rust code

* e.g. the rules below match |hs/rhs "token trees" separated by a "/" token

#[macro_export]
macro_rules! rat {

($1lhs:tt / $rhs:tt) => (Rational::from($lhs, $rhs))

¥

