
© Kris Jordan 2019 - All Rights Reserved

VM day today!
Update Rust: $ rustup update

Pull 590-material from upstream.

Let's Implement a Rational Number Module

• A rational number is made of two integers:
numerator, denominator

• Arithmetic operators can be applied to
rational numbers:

numerator

denominator

Warm-up: Simplify Rationals

• Open:
• 27-operator-overloading/src/main.rs
• 27-operator-overloading/src/rational.rs

• Notice two Rational objects are constructed and printed...
• ...they're not simplified, though!

• Fix the constructor so that all Rational objects are simplified upon
construction.

• Check-in on PollEv.com/compunc when complete and then think through
how you would write an add method to add two Rationals together.

Operators on Complex Data Types

• Some data types are well suited to use operators like +, -, *, /:
• Rational numbers
• Vectors in the mathematical sense
• Matrices
• Data tables

• Relational operators like ==, <, >, etc. are commonly useful, as well

• Most programming languages you've used do not allow you to extend
the meaning of operators dependent on their usage
• For example, to test equality of Strings in Java you say s1.equals(s2) ... yuck

Operator Overloading
• Some languages allow you to define the meaning of operators on user defined types:

• C++, C#, Python, Rust, Ruby, and many others

• Suppose you're defining a type T and have two objects a and b of type T
• In your programs you'd like to be able to write: a + b ... how is this made possible?

• General strategy for operator overloading:

1. You add specifically named and typed methods to your data type T

2. When the compiler reaches an addition expression LHS is of type T, it
• Looks to see if T has the specially named method defined on it. If not, error.
• If so, substitute a + b with a.specialMethod(b)
• This idea of "magic method calls" is pervasive with toString methods even in Java

• Each language that supports operator overloading has its own conventions for
implementing.

Operator Overloading in Rust

• We'll take a high-level pass at operator
overloading. Full detail in Ch 12.

• Many operators can be overloaded. The
book's table 12-1 (right) is a great reference.

• Each operator you want to overload has its
own trait. You must implement this trait for
the left-hand side's type.

impl Mul for Rational {
type Output = Rational;
fn mul(self, rhs: Rational) -> Rational {

Rational::from(self.n * rhs.n, self.d * rhs.d)
}

}

Follow-along: Overload the Multiplication Operator
• The multiplication operator's trait is Mul

• Let's implement it for Rational as shown below

• Notice the mul method's self is the left-hand side rational and the right-hand
side rational is the second parameter of the method.

• Output is the associated type specifying the return type of the operator.

• Now, in main, let's try multiplying our two Rationals together.

Hands-on: Implement the Addition Operator
• Add another impl block Add for Rational.

• It should look exactly like Mul's except the function's name is add.

• Implement the arithmetic to return a Rational that's: lhs + rhs

• Try using the addition operator in main to test its correctness.

• Check-in when your overloaded addition is working.

impl Add for Rational {
type Output = Rational;
fn add(self, rhs: Rational) -> Rational {

Rational::from(
self.n * rhs.d + rhs.n * self.d,
self.d * rhs.d,

)
}

}

Follow-along: Operating on Different Types

• What if we wanted to be able to add an i64 with a Rational?

• The default impl of traits assumes the same type for LHS and RHS.

• You can override the RHS with a generic type on the Trait. For example:

impl Add<Rational> for i64 {
type Output = Rational;
fn add(self, rhs: Rational) -> Rational {

Rational::from(self, 1) + rhs
}

}

Hands-on: Addition for Rational + i64
• Add another impl block Add for Rational.

• Instead of overloading addition for i64 + Rational it should overload
for Rational + i64.

• Come up with an example to test in main.

• Check-in when your code is working!

Preview: Implementing a Macro

• We currently construct Rationals via the Rational::from static method

• For example: Rational::from(1, 2)

• Wouldn't it be nice if we could express a Rational more naturally?

• Perhaps something like: rat!(1 / 2)

• With a function this is generally impossible because the 1 / 2 expression is evaluated
before the "rat! function" would be called.

• With a macro, because macros are expanded in an early stage compilation, we can
match against the three tokens (1, /, 2) and rewrite a substitution using those tokens.

#[macro_export]
macro_rules! rat {

($lhs:tt / $rhs:tt) => (Rational::from($lhs, $rhs))
}

Defining a simple macro
• Macros preprocess your source code to make substitutions before compilation

• They're a deep subject with lots of nuances covered in Chapter 20

• To make any sense of macros requires understanding tokens and parse trees

• In Rust, a macro definition specifies patterns of tokens or AST nodes to match
• Those tokens / AST nodes are then substituted into a template of Rust code

• e.g. the rules below match lhs/rhs "token trees" separated by a "/" token

