
© Kris Jordan 2019 - All Rights Reserved

VM day today!
Pull 590-material from upstream.
Run: sudo apt install ghostscript

Today's Goal

1. What is a build system?

2. Case Study: make The Original Build System

3. Reflect: Imperative vs. Declarative Approaches
• Shell Script vs. Makefile

Cargo Example

• In your most recent problem set, try running the following command twice:
• cargo build --verbose

• Count the number of times you see "Running" and a command

• Now, clean the project:
• cargo clean --verbose

• Then, try building again:
• cargo build --verbose

Build Systems
• Machine code program files are complex digital artifacts to produce

• Many tools are required to compile high level programs into machine code

• Tools in a compilation process may include:
• linters to check and fix deviations from a style guide
• running of test harnesses to verify lack of regressions
• optimization of assets (images, language resource files, and so on)
• compilation of source code to an intermediate representation
• compilation of intermediate representations to machine code

• Carrying out each step manually is tedious and error prone.

• During development only small parts of a program change.
• Why repeat the whole process from scratch when most steps have same results?
• Downside for using only a shell script to automate your software build:

• At worst: naive. Repeats the whole process from scratch.
• At best: complex and fragile. Keeping track of all dependencies and taking min actions on change is

tough.

Enter: make and Makefiles (1976 - Bell Labs)
"Make originated with a visit from Steve Johnson (author of yacc, etc.), storming into
my office, cursing the Fates that had caused him to waste a morning debugging a
correct program (bug had been fixed, file hadn't been compiled, cc *.o was therefore
unaffected).

As I had spent a part of the previous evening coping with the same disaster on a
project I was working on, the idea of a tool to solve it came up. It began with an
elaborate idea of a dependency analyzer, boiled down to something much simpler,
and turned into Make that weekend.

Use of tools that were still wet was part of the culture. Makefiles were text files, not
magically encoded binaries, because that was the Unix ethos: printable, debuggable,
understandable stuff."

— Stuart Feldman

The make Build System's Big Idea

• Early steps in a build will run a commands taking source files to produce target files.
• Later steps' commands use target files as source files and produce more target files.

• In a Makefile, you specify each step's:

1. Prerequisite "Source" files
2. Recipe of Command(s) to process those files
3. The "Target" file produced by the recipe

• make reads the Makefile and then figures out which target files are missing or
outdated and run only the commands needed to build exactly those targets.

• make was designed for software projects but works much more generically
• This is evidence of a good abstraction. Does it generalize beyond intent?

Makefile - Rule Specification

<target-file>: <source-file>*

[tab-character]<recipe-to-produce-target-from-source>*

Example:

ch1.pdf: ch1.md

pandoc -o ch1.pdf ch1.md

Makefiles with multiple final targets

• By default, make treats the first rule of a Makefile as the "default goal"
• This rule is considered the final target of the build.

• To run multiple steps that produce multiple targets, it's common to
have an "all" default goal with sub-targets as prereqs and no recipe.

• For example:

all: ch1.pdf ch2.pdf

Running make with specific goals

• With the make command you can specify a goal (name of target)

• For example:
$ make ch1.pdf
$ make ch2.pdf

• This causes make to focus on a subtarget

• This feature is commonly used to add build tasks to a project outside
of the compilation process. For example: cleaning generated files up.

Adding a clean goal

• Add a rule at the end of the Makefile to delete the produced PDF files:

clean:

rm *.pdf

• This rule can be run as a goal:

$ make clean

Targets that build on one another

• Let's use ghostscript to merge multiple PDFs into a single PDF
• ghostscript is "An interpreter for the PostScript language and for PDF."
• Not installed by default: sudo apt install ghostscript

• Replace the 'all' rule with:

doc.pdf: ch1.pdf ch2.pdf
gs -q -dNOPAUSE -dBATCH -sDEVICE=pdfwrite \

-sOutputFile=doc.pdf \
ch1.pdf ch2.pdf

Dependency Visualization

ch1.md

ch2.md

ch1.pdf

ch2.pdf

doc.pdf

pandoc –o ch1.pdf ch1.md

pandoc –o ch2.pdf ch2.md gs … -sOutputFile=doc.pdf

• Notice your Makefile describes the structure of a directed acyclic graph
• The nodes of the graph are files and the edges are build steps

• If a node is target determined to be missing, make can backtrack to the missing prerequisites and
execute the commands of each edge in order.

• This is an example application of partial ordering and topological sort!

Automatic Variables

• It's common you want to reference your target file or prerequisite
file(s) as part of the recipe.

• Automatic variables are available:
• $@ - The filename of the target of the rule.

• $^ - The names of all the prerequisite source files with spaces between them.

• $? - The names of all prerequisite source files that are newer than the target.

• And many more...

make is a much deeper subject than this tutorial

• As a 40-year old tool it has accumulated many capabilities

• Many features try to avoid redundancy and verbosity of the Makefile
• The downside is this leads to cryptic, non-obvious Makefiles

• Special features to use make for building specific kinds of projects
• i.e. C projects or archives

• Modern build systems like CMake will generate a Makefile specific to the system the
project is being built on.
• Eases portability between operating systems and versions.

• The documentation for make is generally very good:
• https://www.gnu.org/software/make/manual/make.html

https://www.gnu.org/software/make/manual/make.html

Case Study: Compiling C Projects

• Open example for lec28 / c /

• Notice three files:
• main.c - Entry point of program, includes helper functions.

• helpers.h - Header file with helper function declarations.

• helpers.c - Helper function definitions.

• Let's explore the Makefile of this project which looks a little more like
a Makefile you'll commonly see in the real world.

Common Variables

The shell recipes should be interpretted in.
SHELL = /bin/sh

The C compiler to use.
CC = gcc
Flags for the C compiler.
CFLAGS = -I. -g

A list of the object files of our program
objects = main.o helpers.o

The default goal is a `factorial` program. This links object files.
factorial: $(objects)

$(CC) $(CFLAGS) -o $@ $^

Each c file is composed into an object file compiled from a source file.
%.o: %.c

$(CC) $(CFLAGS) -c -o $@ $<

PHONY rules are ones that do not produce target files.
.PHONY: clean
clean:

rm -f factorial $(objects)

Many build tools are make-inspired

• Nothing stops you from using make for any project, but many ecosystems revolve
around tooling custom suited for their environment.

• C/C++ – make, Cmake, bazel

• Rust – cargo

• Java – Ant, Maven, Gradle, bazel

• Node.js / JavaScript / TypeScript – npm, webpack, gulp, grunt

• Python – Scons, Waf

Imperative vs. Declarative Languages

• Imperative languages describe how a task should be accomplished
• Most general-purpose languages (GPLs) are imperative by default
• Often concerned with how to effectively mutate state and actual algorithms
• You are writing the algorithm(s).

• Declarative languages describe what a task should accomplish
• Most Little Languages are declarative by design and limitation
• The how is left to the implementor of the Little Language

• This is a false dichotomy in that you can take a declarative approach in general-purpose
programming languages by using good abstractions.
• Functional example: higher-order functions like filter, map, and reduce.
• Java example: sorting methods.
• Rust example: macros.

• The existence of declarative solutions suggests good abstractions to a generalized problem.
• Declarative solutions can be improved for free by improving the underlying system!

