
© Kris Jordan 2019 - All Rights Reserved

Open today's lecture folder, go into the lalrpop
directory, and do a cold run: $ cargo run

We're using a library with lots of dependencies
that take time to build.

Consider the following grammar

Term -> Num | "(" Term ")"

Num -> [0-9]+

• Where Num is a terminal defined as a regular expression.

• Respond to the questions on PollEverywhere as to whether each
input string can be parsed given this grammar.

Parser Generators

• The language we use to specify grammars itself has a grammar.
• Context-Free Grammars are made of terminals, non-terminals, production rules, and so on.

• Our Context-Free Grammars (CFG) specifies token rules and syntax rules
• These rules give us enough information to determine if a string can be parsed or not.
• These rules do not tell us what happens when each rule is derived from an input string.

• Syntax-Directed Translation languages augment CFGs with semantics
• SDTs are beyond the scope of this course but we'll preview them to get a feel

• Intuition: If you write enough parsers by hand and you'll realize their structure
grows predictably from the grammar. Custom "logic" is applied at specific rules to
either directly interpret the rule or produce an element for the AST.

• Solution: Generate the code for a parser based on an SDT language made up of both
a grammar and the code you want to run when a syntax rule is derived.

Early SDT tools can be traced back to...

• ... you guessed it: Bell Labs and the Unix team.

• yacc - Yet Another Compiler-Compiler
• A LALR parser generator
• Originally written by Stephen Johnson in the early 70s
• Only handles syntactical analysis (parsing), programmer supplies tokenization.

• lex - Lexer (Tokenizer) Generator - 1975
• Specify regular expressions of terminals and lex produces a tokenizer for you.
• Originally written by Mike Lesk and Eric Schmidt

• Yes, that Eric Schmidt of Google. He was a summer intern at Bell Labs when he made lex.

Tutorial: LALRPOP in Rust

• Today we'll walk through a brief tutorial of LALRPOP
• It is a Rust crate capable of generating a Parser from a little SDT language

• This tutorial is inspired by (and has more detail covered) the crate's official
introduction: http://lalrpop.github.io/lalrpop/README.html

• Today's repo has a baseline setup in place. Since this crate has many
dependencies, it's worth going ahead and starting your first build:

$ cd 590-material-<you>/lecture/30-parser-generator/lalrpop
$ cargo build

http://lalrpop.github.io/lalrpop/README.html

A Simple LALRPOP File Example

// src/v1_eval.lalrpop
1 use std::str::FromStr; // Any imports needed for semantic rules
2
3 grammar; // The start of the grammar
4
5 pub Term: i32 = { // Production rule defn. pub makes usable in your code.
6 <n:Num> => n, // Explicit "match" arm, <n:Num> says n is Num terminal
7 };
8
9 Num: i32 = <s:r"[0-9]+"> => i32::from_str(s).unwrap(); // Terminal rule written as regex

Given the following Grammar:

Term -> Num

Num -> [0-9]+

A

A

B

B

In the grammar of a LALRPOP file, the code that is evaluated when
a production rule is derived is on the right side of each arrow =>

Notice when the Term rule that matches a Number is derived, it
evaluates to the number's value.

When the Num rule is tokenized, it is converted from a &str to an
i32 and evaluates as an i32.

Parser Generator Build Steps

• Parser Generators emit source code your project then relies upon just like
any other source code file.

• Translating the SDT file into source code must happen before compilation.

• LALRPOP has a simple "build script" in build.rs that is invoked before your
code compiles.
• It generates Rust code in the target directory behind the scenes.

• Macros provided by the crate then enable you to import the parser(s).
• The rules declared pub in the lalrpop file generate structs you can import

Using a LALRPOP Parser in Code

• The lalrpop_mod!(pub v1_parens); macro establishes the import from its hidden
location in the target directgory.

• Notice the package has a struct called TermParser that is generated from the
lalrpop's pub Term rule.

• In this example, the first parse returns Ok(1), the second fails at unknown first token.

1 #[macro_use]
2 extern crate lalrpop_util;
3
4 lalrpop_mod!(pub v1_eval);
5
6 fn main() {
7 let parser = v1_eval::TermParser::new();
8 println!("{:?}", parser.parse("1"));
9 println!("{:?}", parser.parse("(2)"));

10 }

Extending our Grammar

Term -> Num | "(" Term ")"

Num -> [0-9]+

• How can we make it possible to parse pairs of parenthesis?

• Add an additional, alternate rule to Term:

pub Term: i32 = {
<n:Num> => n,
"(" <t:Term> ")" => t,

};

Adding Direct Interpretation of Arithmetic

Factor -> Factor "*" Term |

Factor "/" Term |

Term

Term -> Num | "(" Factor ")"

Num -> [0-9]+

• Notice this grammar is not LL(1) because the Factor rule is left-recursive!

• LALR parsers operate on LR(1) grammars that are more than LL(1)
• How? Bottom-up parsing!

• Why did we not write a bottom up parser? Because they're too painful to write by hand.

• If these kinds of things fascinate you, invest in the "Dragon Book" on Compilers by Aho, et.al.

Adding Factor to the LALRPOP Grammar

pub Factor: i32 = {
<l:Factor> "*" <r:Term> => l * r,
<l:Factor> "/" <r:Term> => l / r,
<t:Term> => t,

}

Term: i32 = {
<n:Num> => n,
"(" <e:Expr> ")" => e,

};

let parser = v1_eval::FactorParser::new();

• There's a 1:1 correspondence with the grammar and the representation in
LALRPOP.

• Notice the semantics of each of the arithmetic rules are applying the
operation immediately. When we test expressions we see a single result.

Hands-on: Add Precedence to the Grammar

Expr -> Expr "+" Factor |

Expr "-" Factor |

Factor

Factor -> Factor "*" Term |

Factor "/" Term |

Term

Term -> Num | "(" Expr ")"

Num -> [0-9]+

• Just like you did in thbc, precedence can be enforced via production rules in the
grammar.

• Try updating your LALRPOP definitions to include addition and subtraction. Then
update your main.rs file to test it out.

The generated Parser can produce an AST, too!

• In the previous examples we
directly evaluated the expression as
it was parsed

• Instead, the semantic rules could
produce nodes of an AST like you
did in thbc

• Let's take a look at how using the
AST enum declarations to the right

#[derive(Debug)]
pub enum Expr {

Number(i32),
Op(Box<Expr>, Opcode, Box<Expr>),

}

#[derive(Debug)]
pub enum Opcode {

Mul,
Div,
Add,
Sub,

}

use std::str::FromStr;
use crate::ast::{Expr, Opcode};

grammar;

pub Factor: Box<Expr> = {
<lhs:Factor> <op:FactorOp> <rhs:Term> => Box::new(Expr::Op(lhs, op, rhs)),
<t:Term> => t,

};

FactorOp: Opcode = {
"*" => Opcode::Mul,
"/" => Opcode::Div,

};

Term: Box<Expr> = {
<n: Num> => Box::new(Expr::Number(n)),
"(" <f:Factor> ")" => f,

};

Num: i32 = <s:r"[0-9]+"> => i32::from_str(s).unwrap();

Importing our AST enums

Notice the type produced by this rule.

Notice here the translation from string
to an enum constant variant.

Using the v2_ast Parser…

• We need to swap out the parser in our main file:

lalrpop_mod!(pub v2_ast);
pub mod ast;

fn main() {
let parser = v2_ast::FactorParser::new();
// ...

}

Hands-on: Add Addition/Subtraction Rules to AST

Expr -> Expr ExprOp Factor |
Factor

ExprOp -> "+" | "-"

Factor -> Factor FactorOp Term |
Term

FactorOp-> "*" | "/"

Term -> Num | "(" Expr ")"

Num -> [0-9]+

Check-in when your parser is producing arithmetic.

