
© Kris Jordan 2019 - All Rights Reserved

We will be on the VM today. Go ahead and pull.

Also be thinking about and discussing:
What do you want to spend the last few lectures discussing?

What do you want to spend the last few
lectures discussing?

• Discuss with your neighbors for 2 minutes!

• Add to the list on PollEv and/or vote for other people's.

tail Utility Program

• The tail utility prints the last 10 lines of a file by default

• The -n or --lines=N flag allows you to change the number of lines

• The -f or --follow flag will output any data appended to a file as it grows

• The follow flag is useful for "watching" files output by programs
• For example, if you have a program that is logging data to a file (common in web

applications) you an "tail" the log file to see its output in real time.

1 use std::fs::File;
2 use std::io::prelude::*;
3
4 fn main() -> std::io::Result<()> {
5
6 let mut file = File::create("foe.txt")?;
7 let mut i = 0u64;
8
9 loop {
10 i += 1;
11 file.write_all(format!("file : {}\n", i).as_bytes())?;
12 println!("stdout: {}", i);
13 eprintln!("stderr: {}", i);
14 }
15
16 }

Mystery on the Pipeline Express
• Open two terminals and ssh into both of them.

• Organize them side-by-side.

• Navigate to the 590-material/lec31-pipes directory.

• First, in the left hand terminal, run the following command:
• cargo run | less

• Second, in the right hand terminal, run the following command:
• tail -f foe.txt

• Then, in the left hand terminal, press the space bar slowly a few times until you see
some changes on the right-hand side.

1. Diagram how foe and less are related via stderr/stdout/stdin.

2. Try to explain the behavior based on what you observe.

3. Press q in less. Try to explain the error. Feel free to start cargo run | less up again

Circular Buffers

• A Pipe is a circular buffer connecting the output of one process to the input of
another.

• A circular buffer is really just a clever use of a fixed sized array!

• Useful when two processes or threads need to stream data to each other

• The writing side is called the producer, the reading side is called consumer
• Each maintains the index up to which they've written or read respectively
• The reader can never progress past the writer (the reader waits until writer progresses)

• When the writer reaches the end of the buffer, it circles back with
• Clever, simple arithmetic: writerIndex % bufferLength
• The writer can never progress past the reader (the writer waits until reader progresses)

• As long as both sides are making progress, allows for a continuous stream of data to
be efficiently transferred within a fixed block of memory.

• Visualization: https://en.wikipedia.org/wiki/Circular_buffer

0

1

2

34

5

6

7

https://en.wikipedia.org/wiki/Circular_buffer

Final Problem Set - Vote

• Option A – Extend `thegrep` with true implementations of exam questions:
• Generating random strings that match

• Operator overloading (at least + for catenation, but probably also | for alternation)

• Perhaps the addition of + or ? regex operators

• Release: Tonight – Due LDOC

• Option B – Implement `thmake` - mini make problem set
• Implement a directed acyclic graph

• Implement topological sort algorithm

• Read file modification times and develop plan to execute recipes

• Release: Weds Night – Due LDOC

