
© Kris Jordan 2019 - All Rights Reserved

We will be on the VM today. Go ahead and pull.

Also run: sudo apt install jq

Curious what you installed? man jq

What is fundamental versus fad?

• Time is a fine filter.

• The list of programs and software tools produced over the past 50 years is
unbelievably long. The majority have not stood the test of time.

• Tools whose abstractions have not improved since invention, but are still
used widely in the real world today, illuminate fundamentals.

• The tools and ideas we've spent time with in this course were first
conceived 50+ years ago. If you go to any major technology company and
ask "is anyone here making use of X", the answer is either "yes" or "no, but
we use Y which is the X of our platform".

Structured Language is a Foundation of CS

• Structured languages are the most effective means humanity has to:

1. Express algorithms interpretable by both humans and machines

2. Convey data between humans and machines

• Knowing how to work with and think in terms of structured language
has unlimited applications.

The Big Picture

1 + 2 * 1 0" " Num(1) Op(+) Num(2) Op(*) Num(10)

Lexeme Token

Lexing

Op(+)

Num(1) Op(*)

Num(2) Num(10)

Abstract Data Structure Representing Input

Directly Informs or
Impacts Program

(e.g. data or script)

Translator

Another
Representation

Old Ideas, Modern Context: nodejs and TypeScript

• Let's first look at an interpreter: nodejs is a JavaScript interpreter

$ node

> function f(i, j, k) { return i + j * k; }

> f(1, 2, 3)

7

• As we input JavaScript, node is directly interpreting it and executing it.

node's interpreter (V8) is really a JIT compiler
• The interpretation in nodejs is non-trivial. It's JavaScript engine, V8, actually compiles (translates) your code into "bytecode" then

machine code, then finally executes it.

• This is called Just-in-Time Compilation.

$ node --print-bytecode

... press enter, keys, and backspace a few times ...

> function f(i, j, k) { return i + j * k; }

> f(1, 2, 3)

...

[generating bytecode for function: f]

Parameter count 4

Frame size 0

10 E> 0x2acbc93b21ea @ 0 : 91 StackCheck

22 S> 0x2acbc93b21eb @ 1 : 1d 02 Ldar a2

35 E> 0x2acbc93b21ed @ 3 : 2d 03 00 Mul a1, [0]

31 E> 0x2acbc93b21f0 @ 6 : 2b 04 01 Add a0, [1]

39 S> 0x2acbc93b21f3 @ 9 : 95 Return

...

7

Op(+)

arg0 Op(*)

arg1 arg2

Lexing, Parsing

TypeScript is a Translator

• JavaScript projects are messy at scale because of dynamic typing
• Goal: Add strong type checking to JavaScript.
• Challenge: The de facto language of web browsers is JavaScript. It is standardized. Improvements

to JavaScript itself take an absurdly long time to "land" and making such a fundamental change
verges on politically impossible.

• Solution: Invent a language that compiles to JavaScript
• TypeScript's "compiler" emits JavaScript

• This is not a new idea. Stroustrup's first implementation of C++ converted C++ to C.
• In fact, many programming language's first implementations translate to C first.

• This is not a new idea. Lorinda Cherry's bc language translated to dc.

• This is not a new idea. Every compiler translates source code to some other kind of
code "closer" to the machine.

Translating TypeScript - 1/2

• Open a new TypeScript file named example.ts, and add:

function f(i: number, j: number, k: number): number {

return i + j * k;

}

• Compile this program to JavaScript with the TypeScript Compiler tsc

$ tsc example.ts

• Open up the resulting JavaScript file, example.js, for inspection.

Translating TypeScript - 2/2

• Add the following class to the TypeScript file:

class Dog {

private name: string;

constructor(name: string) { this.name = name; }

getName(): string { return this.name; }

}

• Compile this program to JavaScript with the TypeScript Compiler tsc

$ tsc example.ts

• Open up the resulting JavaScript file, example.js, for inspection.

• Check-in on PollEv.com/compunc once you've checked it out.

JSON and jq (1 / 2)

• If you didn't at start of lecture: sudo apt install jq

• What is jq? It's sed for JSON.
• In industry you'll see the it's <Old Utility> for <New Technology> pattern often.

• Maven is make for Java.

• Let's grab a JSON file:
$ curl 'https://api.github.com/repos/comp590-19s/590-material/commits' > commits.json

• Open it to take a look…

JSON and jq (2 / 2)
[
{
"sha": "06003993faa45db7d0461ff0e3e1aaa175a74be0",
"commit": {
"author": {

"name": "Kris Jordan",
"email": "kris@cs.unc.edu",
"date": "2019-04-15T16:40:05Z"

},
"committer": {

"name": "Kris Jordan",
"email": "kris@cs.unc.edu",
"date": "2019-04-15T16:40:05Z"

},
"message": "rename 31",

...
}, ...

]

• The authors of jq built a little language for
extracting and transforming data from JSON.

• Some examples to try on this data…

• $ jq '.[] | [.commit.message, .commit.author.date]' commits.json

• $ jq '[.[] | {message: .commit.message, date:.commit.author.date}]' commits.json

• For reference on the discussion in class:
https://stedolan.github.io/jq/tutorial/

https://stedolan.github.io/jq/tutorial/

Strengthened Foundational Skills

As a computer scientist, data scientist, software engineer, and so on,
having developed these skills this semester are invaluable:

• Command-line and Text Editor Comfort

• Understanding of the Process Model

• Test-driven Development

• Dependencies and Build Tools

• Regular Expression Fluency

• Grammar Comprehension

