
© Kris Jordan 2019 - All Rights Reserved

We will be on the VM today. Go ahead and pull.

$ sudo apt update
$ sudo apt install openjdk-11-jdk-headless

Then open a 2nd terminal while that's installing.

After install – open today's lecture and read the files in the 
c directory and explain what you expect the output to be 

with a neighbor.

This installs an open source implementation of Java.



Compile C to Object Code File

• Generate the "object" code – binary machine code – of a single C file
gcc -c <filename>.c

• Print the "names" in the object code with nm
nm –n <filename>.o

• You can disassemble the machine code into assembly code with objdump
objdump -D <filename>.o

• To compile multiple object files into an executable program:
gcc <file1.o> <file2.o>

• Run the executable
./a.out



C's Object Files and Executable Machine Code

node.c node.o

$ cc -c node.c

main.c main.o

$ cc -c main.c
Compiles C code into machine 
code with undefined references 
to imported names (functions, 
consts, globals).

$ cc main.o node.o

main.o node.o

a.out

Imported
Standard 
Libraries

Object files are linked together.

References to shared library 
names are established to be 
loaded dynamically.



Inspecting the locations of names in object files using nm

$ nm -n node.o | grep ' T '
0000000000000000 T cons
0000000000000038 T first
000000000000007f T rest
00000000000000c8 T destroy

The address of the 
definition in the object file.

The "T" means the name is 
found in the text (think: code) 
segment of the binary file.

The symbol being defined.

$ nm –n main.o | grep ' T '
0000000000000000 T main
0000000000000080 T print_list
00000000000000e2 T sum

Notice the addresses of the functions in these files 
overlap with one another.

If we want to join these two files a single program, at 
least one set of functions will need to be relocated.

If instead we filter main for its undefined names, 
notice there are references to cons, first, and rest.

There are also references to library functions (some
we didn't even call directly!)

$ nm –n main.o | grep ' U '
U _GLOBAL_OFFSET_TABLE_
U puts
U cons
U printf
U first
U rest
U putchar



The Results of Linking Object Files into an Executable Binary

$ nm –n node.o | grep ' T '
0000000000000000 T cons
0000000000000038 T first
000000000000007f T rest
00000000000000c8 T destroy

$ nm –n main.o | grep ' T '
0000000000000000 T main
0000000000000080 T print_list
00000000000000e2 T sum

$ nm -n a.out | grep ' T '
0000000000000680 T _init
0000000000000730 T _start
000000000000083a T main
00000000000008ba T print_list
000000000000091c T sum
000000000000095c T cons
0000000000000994 T first
00000000000009db T rest
0000000000000a24 T destroy
0000000000000a70 T __libc_csu_init
0000000000000ae0 T __libc_csu_fini
0000000000000ae4 T _fini

Notice in the executable binary, the code from both object files is added in but has been relocated. 

If the location of a function definition changes, what also must change? All calls to it are updated by linker, too!

Additional symbols are the front matter and back matter to conventionally start up and wind down the program and 
any additional library dependencies (i.e. libc here)



Compiling Java to IR Bytecode

• javac <ClassName>.java

• Produces <ClassName>.class

• This is an Intermediate Representation (IR) called bytecode the JVM runs.

• You can view "disassembled" bytecode with javap -c <ClassName>.class

• To run the Java program, you indicate the class containing main: java <ClassName>
• Java Virtual Machine reads this code and interprets it or compiles to machine code Just-in-Time
• Class loader responsible for loading referenced outside classes



Java's Intermediate Representation Model

Java 
Virtual 

Machine
Program

$ java Main

Main.java Main.class
$ javac Main.java

Compiles Java source code 
into JVM IR bytecode.

1. Reads the IR bytecode and 
interprets its instructions.

Just-in-Time 
Machine Code

2. Common code paths are
compiled from bytecode to
machine code "just-in-time".



Trade-offs of IR Bytecode vs. Machine Code

Pros Cons

Machine Code Loads directly into memory and CPU can 
execute at raw speed.

Raw access to low-level machinery.

Simpler, smaller program to "deploy" 
because less dependent on giant libraries 
and runtimes.

Not portable across operating systems nor 
CPU architectures.

Dynamic library loading is fragile based on 
system settings and very operating system 
dependent.

IR Bytecode Portable to any architecture with a Virtual 
Machine to execute the bytecode.

Long-running programs can be compiled to 
machine code JIT and not lose as much
performance.

Virtual machine offers convenient features 
(i.e. garbage collection).

Slower to start a program (by many orders of 
magnitude).

Slower to execute a program (by how much 
depends on whether interpreted or JITed).

Overhead and fundamental limitations of 
virtual machine runtime features.



Compiling Rust to a Shared Object File

• Start Rust project with --lib option in Cargo

• Add the following to Cargo.toml

• Now, when we build a "libhello.so" file is produced in the target dir

[lib]
name = "hello"
crate-type = ["staticlib", "cdylib"]



Compiling C that relies on a Rust library...

• cd into the Rust library

• gcc main.c -L. -l:./libhello.so
• The -L flag says adds the current directory to the library file search path

• The -l flag specifically links the library file ./libhello.so

• Now try running ./a.out



Writing Python that relies on a Rust library...

• cd into the python library

• Copy libhello.so into this directory

• Checkout ffi.py to see how the linkage is made in Python

• Try running python ffi.py


