
© Kris Jordan 2019 - All Rights Reserved

We will be on the VM today. Go ahead and pull.
cd into lecture 35 / jsx

Then run:
$ npm install

Final Exam

• Thursday, May 2nd, at 12pm

• Final Exam score can replace a single lower midterm score
• Will happen automatically if it improves your outcome

• Combines concepts from MT1 and MT2
• Unlike [Beauty in Squares] – we'll use a modern, real world grammar

• I'll distribute the grammars Monday but we'll preview them today

Modern ECMAScript

• A case study on the final will revolve around RegExps and JSX in ECMAScript.

• Grammar Notation:
• https://www.ecma-international.org/ecma-262/8.0/index.html#sec-grammar-notation

• Primary Expressions:
• https://www.ecma-international.org/ecma-262/8.0/index.html#sec-primary-expression

• RegExps:
• RegExp Literal: https://www.ecma-international.org/ecma-262/8.0/index.html#sec-literals-regular-

expression-literals
• RegExp Grammar: https://www.ecma-international.org/ecma-262/8.0/index.html#sec-regexp-regular-

expression-objects

• Facebook React's JSX Syntax Extension:
• https://facebook.github.io/jsx/

https://www.ecma-international.org/ecma-262/8.0/index.html#sec-grammar-notation
https://www.ecma-international.org/ecma-262/8.0/index.html#sec-primary-expression
https://www.ecma-international.org/ecma-262/8.0/index.html#sec-literals-regular-expression-literals
https://www.ecma-international.org/ecma-262/8.0/index.html#sec-regexp-regular-expression-objects
https://facebook.github.io/jsx/

JavaScript Regular Expressions

• Regular Expression Literal

• Pattern

• Disjunction

• Alternative

• Term

• Assertion (^$)

• Quantifier / Quantifier Prefix

• Play around in your browser with console (Ctrl+Shift+J) or in the VM:

• $ cd 590-material/lecture/35-final-thoughts/regexp

• $ node regexps.js

Babel: A JavaScript Transpiler

• Website: https://babeljs.io/

• Used by many projects to enable modern JavaScript features by translating
them into equivalent code expressed in terms of older versions of the
language.

• Plugin architecture allows experimental language features to be developed
without rewriting a complete JavaScript tokenizer/parser/code
generator/etc

• FaceBook's React Project introduced a popular extension to the JavaScript
language (JSX) that can be transpiled using babel.

https://babeljs.io/

Facebook React JSX

• JSX is an extension to the ECMAScript language
• Formal grammar linked to in previous slide

• Introduces HTML-like syntax literals to the language

• Transpiles from .jsx files to .js

Demo Directory:

$ cd 590-material/lecture/35-final-thoughts/jsx

$ npm install

Demo Compiling by reading a file and writing out a file:

$./node_modules/.bin/babel --out-file example.js example.jsx

Demo Compiling with standard input:

$ cat example.jsx | ./node_modules/.bin/babel --filename example.jsx

Language Concepts

• Regular Expressions
• Relationship between Regular Expressions and Automata

• Grammars
• Terminals vs. Non-terminals
• Derivation of Parse Tree

• Lexemes and Tokenization

• Parsing and Abstract Syntax Tree Representation

Lower Level Language Programming Concepts

• null

• Stack values versus heap values

• Lifetime of values

• Addresses, Pointers, and Dereferencing

• Smart pointers in Rust vs. raw pointers in C
• https://doc.rust-lang.org/book/ch15-00-smart-pointers.html

https://doc.rust-lang.org/book/ch15-00-smart-pointers.html

Programming Language Concepts

• Pattern Matching Statements
• if-let

• match

• Algebraic Data Types
• Rust's Enum

• Operator Overloading

System Operations

• Process Model
• Process vs. Program

• Arguments

• Standard Input/Output/Error

• Pipes

• Output Redirection

• Environment Variables

• Tools of the Trade
• Shell: Bash

• $HOME, $PATH, $?

• Version Control: git

• Text Searching/Filtering: grep

• Text Stream Editing: sed

• Command builder: xargs

The UNIX Philosophy '78 per Doug McIlroy

• "Make each program do one thing well."
• Make each function and class do one thing well, as well.

• "Expect the output of every program to become the input to another, as
yet unknown, program. Don't clutter output with extraneous
information. [..] Don't insist on interactive input."

• "Design and build software, [..], to be tried early [..]. Don't hesitate to
throw away the clumsy parts and rebuild them."

• Use tools in preference to unskilled help to lighten a programming task,
even if you have to detour to build the tools and expect to throw some of
them out after you've finished using them.

Kernighan and Pike '84

"Even though the UNIX system introduces a number of innovative programs
and techniques, no single program or idea makes it work well.

Instead, what makes it effective is the approach to programming, a
philosophy of using the computer.

Although that philosophy can't be written down in a single sentence, at its
heart is the idea that the power of a system comes more from the
relationships among programs than from the programs themselves.

Many UNIX programs do quite trivial things in isolation, but, combined
with other programs, become general and useful tools."

Thank you!

