Tar Heel Desk Calculator - thdc - Tokenizer

PS02 - COMP590 - Spring 2019

Overview

In the next series of problem sets you will implement the essence of dc (1969), the original
“Desk Calculator” program. The little language of dc is Unix’s oldest surviving language. It
was originally implemented in B, the predecessor to the C programming language.

Using dc will feel a bit foreign because it uses reverse-polish notation (RPN). This means
operators follow their operands as oposed to infiz notation where operators are placed
between their operands. For example, 1 + 2 is expressed in RPN as 1 2 +. An interesting
property of RPN languages is that there is no need for parenthesis to handle special cases for
orders of operations. For example, using infix notation the expression (1 + 2) * 3 requires
parenthesis for the addition to occur before the multiplication. With RPN the previous
expression is written as 1 2 + 3 * . Notice that is distinct from 1 2 3 * + which is
equivalent to the infix expression 1 + 2 * 3.

There are two key benefits to starting our journey into little languages with a simple, RPN
language like dc’s:

1. It is a reqular language, meaning its production rules can be expressed with a reqular
definition. You will come to learn such a language is less expressive than a context-free
language (required for infix-based languages) and needs simpler machinery to process.
You will implement a context-free language processor in the thbc assignment.

2. Since the operands of each operator are expressed before the operator, once an operator
is encountered thdc can evaluate it immediately. The structure of the language is
inherent in the ordering and no additional work is needed to parse it. Notice this
simplification on the implementation side comes with the higher cost of users needing
to do the legwork to translate their calculations into RPN.

This series of problem sets will break the implementation down into three steps:

1. Tokenization - Using a stream of characters as inputs you will generate a stream of
typed Tokens (such as Operator, Number, Print) before concerning yourself with their
interpretation.

2. Stack Machine - In the next part you will implement a software machine to process
tokens one-by-one and carry out their instructions.

3. Registers - Once the fundamentals of thdc are working you will extend its language
and machinery to support named registers (think variables).

https://en.wikipedia.org/wiki/Reverse_Polish_notation

Example Usage of dc

Here are some example use cases of dc to motivate the direction we are moving in. You
are encouraged to follow along and tinker with your own examples. Note your behavior for
this part of the problem set will not perform the calculations yet. The lines with comments
following the pound symbol are the ones you can enter into dc. Those without comments
are what it prints out in response.

$ dc
In this program we'll add 1 + 2

P # print the top value of stack

dc: stack empty

1 # push 1 onto the stack

P # print the top value of stack

1

2 # push 2 onto the stack

P # print the top value of the stack

2

+ # add the top two values to the stack and push result
P # print the top value of the stack

3

q # quit

$ dc

12+3*p # (1 + 2) * 3 and print value remaining on stack
9

123 *x+p # 1 + 2 * 3 and print value remaining on stack

7

f # print the full stack

7

9

+ # add the top two values of the stack and push result
P # print top of stack

16

q # quit

In addition to the usual suspects of arithmetic (4, -, *, /), there are two other operators
we’re concerned with initially: p prints the top value of the stack and f prints the full stack
from top-to-bottom. The character q quits the program.

Differences Between thdc and dc

The most fundamental difference between thdc and dc is that yours will not implement
arbitrary precision arithmetic. In dc you can calculate things like pi precisely to however
many digits you'd like without any roundoff loss. In thdc we’ll make do with the limitations
of 64-bit floating point arithmetic. There are many other advanced features of dc we will
not implement in this series of problem sets, as well, such as strings, macros, conditionals,
stack-based registers, and so on.

Tokenization

The first step of processing a language is called lexical analysis. Its purpose is to raise the
level of abstraction from thinking in terms of characters to thinking in terms of tokens. For
example, consider the following input string 10 20 + p. At the character level, with space
characters represented by <sp>, the nine input characters are:

lll IOI <Sp> l2’ IO’ <Sp> I+l <Sp> IPI
The purpose of a tokenizer, also commonly called a lexer, is to take an input string such as
the one above and yield tokens which have meaning in the context of their language.

Num(10) Num(20) Operator('+') Print

Notice the space characters were filtered out and are not expressed as tokens. Your assignment
in this problem set is to implement the tokenizer for thdc given the following token definitions.
In this regular definition, terminals are surrounded in single quotes:

digit => 0" | a2 | '3 | 4| ' | e | 7T '8] 9!
digits -> digit digit*

number -> digits | digits '.' | digits '.' digits

print -> 'p'

full_stack -> 'f'

operator => =t

unknown -> _any terminal character not recognized by rules above_
token -> print | full_stack | operator | number | unknown

A few notes on the regular definition above:

1. Whitespace is not addressed by this definition. It is expected you will ignore spaces,
tabs, and new line characters.

2. The definition of the digits non-terminal can be read as “digits are a digit followed
by zero or more digits”. The * is the Kleene Star operator that means zero or more
instances.

3. Greediness is expected in tokenization. For example, the input string 123 should be
consumed greedily into a single Token whose value is 123 versus non-greedily into three
Tokens whose values are 1, 2, and 3.

4. As in dc, you cannot enter negative numbers directly. How would you get a negative
value on the stack?

Getting Started

GitHub classroom starter URL: https://classroom.github.com/a/5yXgUG6UR

Please follow the link above to setup your repository for this problem set. Once you’ve done
so, youll want to find its Clone link and be sure you choose the SSH option that begins with
git@github.com:comp590-. ... Copy that link to your clipboard.

While logged in to your VM in a terminal, issue the following commands and replace the
words in <tags> with the values specific to you:

$ cd $HOME
$ git clone <paste>
$ cd ps02-thdc-<your-github-username>

You should go ahead and edit Cargo.toml to have your name in it and fill in the honor
pledge on both src/main.rs as well as src/tokenizer.rs.

Skeleton Code

To focus your work on the concept of tokenization, we setup a project structure for you.
Here is an overview of the files provided:

Cargo.toml - The project’s Cargo configuration file. You should update the author to be
you. Also notice the structopt dependency is listed here. This is what informs Cargo your
project depends on the structopt external library. It automatically downloads and compiles
it as needed during the build process.

src/main.rs - The program’s main entry point is in this file.

It uses an external library called structopt to handle command-line argument parsing.
Try running with the -h flag as follows: cargo run -- -h. You'll notice a debug mode
is established with the -d short flag or --debug long flag. The structopt library makes
handling command-line arguments much easier than trying to interpret them yourself as you
experienced in thecho. For this problem set you will want to run cargo run -- -d, the
short flag for debug mode, for interacting with your tokenizer.

The src/main.rs file reads in lines of input from stdin and, in debug mode, iterates through
the tokens generated by your Tokenizer printing them one by one. You should read through
this file and its comments to get a feel for how this comes together. In future problem sets
we will not provide as much skeleton code.

src/tokenizer.rs - The Tokenizer skeleton code establishes it as an implementation of
the Iterator trait so it can iterate through an input string’s Tokens just the same as you
can iterate through anything else in Rust. You should read through the comments and code
in this file a few times over to become very familiar with it. You should also look in the eval
function of src/main.rs to understand its usage. It is already setup to handle Print and
Unknown tokens. Your job is to extend its implementation to produce FullStack, Operator,
and Number tokens based on the grammar, while ignoring all spaces, tabs, and newlines.

You will notice the Tokenizer has as its only member a Peekable Chars iterator. This is
just like the Chars iterator you used in thecho with one additional method available: peek.

https://classroom.github.com/a/5yXgU6UR

The peek method returns an Option<char> but does not move the Chars iterator forward.
This allows you to “peek” one character ahead without advancing the iterator.

The Tokenizer’s Iterator impl defines the next method which produces an Option<Token>.
You will notice it peeks one character ahead to decide which kind of Token it is going to
take next and then dispatches the work of producing the Token off to a helper function.

Both the next method and the helper functions have unit tests defined beneath them. In
the course of adding functionality to your Tokenizer, you should add tests along the way. A
large part of the hand graded score for this problem set will assess your tests. A few sample
tests are provided and you can run them with cargo test.

Example Usage and Output

Before you begin work you should try cargo run -- -d and entering p and an unknown
character to see the starting point the starter code leaves you in.

A few sample use case scenarios your final version should be able to produce are demonstrated
below.

$ cargo run -- -d

f+ - */
== TOKENS ==
FullStack

Operator('+')
Operator('-')
Operator('*"')
Operator('/")

2.5
== TOKENS ==
Number (2.5)

100
== TOKENS ==
Number (100.0)

1 2.0+pf

== TOKENS ==
Number (1.0)
Number (2.0)
Operator('+")
Print
FullStack

Grading Rubric Breakdown

Autograding Levels

1.
2.
3.
4.

10 points - FullStack Token

10 points - Operator Token

20 points - Number Token

20 points - Ignoring Whitespace

Hand-graded Points

1.

10 points - Style and Documentation

-~

Did you run :RustFmt in vim to ensure proper indentation and formatting
Did you name variables meaningfully?

Did you add comments to segments of code that are not self-documenting?
Did you organize your code well?

30 points - Unit Tests

Did you write unit tests for helper methods?
Did you write unit tests for the next method?

— Do they cover variations of whitespace?

— Do they cover each kind of Token next can generate?
Are your unit tests logically organized and well named?

	Overview
	Example Usage of dc
	Differences Between thdc and dc

	Tokenization
	Getting Started
	Skeleton Code
	Example Usage and Output

	Grading Rubric Breakdown

