
Tar Heel Extended Regular Expressions - thegrep

PS05 - COMP590 - Spring 2019

Overview

The classic grep text pattern-matching search tool was originally authored in 1974 by Ken Thompson.
It is widely used today. This command-line utility marries the theory of regular languages and
automata with the practical application of efficiently searching bodies of text.

Regular expressions can readily be represented as simple state machines often illustrated as transition
diagrams or annotated digraphs. These concepts will be introduced in lecture and are covered
in full depth in COMP455. The general idea, though, is that a target regular expression pattern
can be transformed into a “machine” whose input is textual characters and whose purpose is to
determine whether the target pattern exists in the text.

Regular expressions are a wonderful little language and the first steps to begin implementing a
regular expression engine are similar to those taken for thdc and thdc. You will need to tokenize and
parse a regular expression pattern into an abstract syntax tree or AST (like the Expr tree in thbc).
In the next parts of this problem set, you will convert the parsed AST into a non-deterministic
finite automaton (NFA). That’s just the fancy term for the “machine” described in the previous
paragraph. Finally, you will implement the algorithm to feed lines of files into your machine and
determine if any match by simulating the NFA. For now, your concern is tokenization and parsing
of the regular expression pattern.

In this problem set you will begin nearly from scratch, establish command-line options and input
parsing, and then implement a tokenizer and parser. The lexeme definitions, Token enum definition,
grammar, and AST enum are provided on the following page. Required command-line options and
expected outputs are specified thereafter.

1

Lexemes of thegrep

〈LParen〉 ::= ‘(’

〈RParen〉 ::= ‘)’

〈UnionBar〉 ::= ‘|’

〈KleeneStar〉 ::= ‘*’

〈AnyChar〉 ::= ‘.’

〈Char〉 ::= any character except ‘(’, ‘)’, ‘|’, ‘.’, ‘*’

Grammar of thegrep

The terminals are specified in the definitions above. Note the challenge of parsing Catenation is
in knowing whether the next character is actually the start of an Atom or not. You should think
about and understand why that is.
〈RegExpr〉 ::= 〈Catenation〉 (UnionBar 〈RegExpr〉)?

〈Catenation〉 ::= 〈Closure〉 〈Catenation〉?

〈Closure〉 ::= 〈Atom〉 KleeneStar?

〈Atom〉 ::= LParen 〈RegExpr〉 RParen | AnyChar | Char

Token and AST Enumeration Types

You should use the following definition with exactly matching names of tokens and abstract syntax
tree nodes. You will ultimately need to print these out using debug formatting for autograding.
You’ll also need to compare them with expected values in unit tests. As such, it will also need to
derive Debug and PartialEq.

pub enum Token {
LParen,
RParen,
UnionBar,
KleeneStar,
AnyChar,
Char(char),

}

pub enum AST {
Alternation(Box<AST>, Box<AST>),
Catenation(Box<AST>, Box<AST>),
Closure(Box<AST>),
Char(char),
AnyChar

}

2

Command Line Options

Running cargo run -- --help should display a help message similar to the following output. You
will need to implement the flags t and p with their respective tokens and parse long forms. You
are encouraged to rely upon the structopt crate as shown in lecture.

The input regular expression pattern you are tokenizing and parsing will be the positional argument
following any flags. Please refer to the structopt crate’s documentation for examples of how to do
achieve this: https://docs.rs/structopt/

thegrep 1.0.0
Tar Heel egrep

USAGE:
thegrep [FLAGS] <pattern>

FLAGS:
-h, --help Prints help information
-p, --parse Show Parsed AST
-t, --tokens Show Tokens
-V, --version Prints version information

ARGS:
<pattern> Regular Expression Pattern

The --tokens Flag

Running your program with --tokens should result in each of the Token values’ Debug representation
being printed individually on each line.

Example usage:

$ cargo run -- --tokens 'ab|().*'
Char('a')
Char('b')
UnionBar
LParen
RParen
AnyChar
KleeneStar

3

https://docs.rs/structopt/

The --parse Flag

Running your program with --parse should result in the parsed AST value’s Debug representation
being printed.

If an error is encountered during parsing, please print any error message to stderr using the
eprintln! macro with the prefix thegrep: before the actual error message.

Example usage (Note: new lines and indentation are NOT expected and were added manually to
this document to help improve legibility. You should just use the default Debug formatting.):

$ cargo run -- --parse 'a.*'
Catenation(

Char('a'), Closure(AnyChar))

$ cargo run -- --parse 'abc'
Catenation(

Char('a'),
Catenation(

Char('b'),
Char('c')))

$ cargo run -- --parse 'a|b|c'
Alternation(

Char('a'),
Alternation(

Char('b'),
Char('c'))

$ cargo run -- --parse '(ab)*'
Closure(

Catenation(
Char('a'),
Char('b')))

$ cargo run -- --parse 'b(oo*|a)m'
Catenation(

Char('b'),
Catenation(

Alternation(
Catenation(

Char('o'),
Closure(

Char('o'))
),
Char('a')

),
Char('m')))

4

Design Documentation

You will need to add a README.md file to the root folder that describes your overall design. This
document is in markdown format (like the GRQs) and will show up automatically on your GitHub
repository. You should include any design decisions you’re particularly proud of as well as any
notes you believe would benefit the graders to be aware of. For pair submissions, please add a
section to this document describing what you contributed and how you collaborated.

Getting Started

GitHub classroom starter URL: https://classroom.github.com/g/9iLvreB7

Please follow the link above to setup your repository for this problem set. If you are working as
a team, agree upon who will establish the team and a team name on GitHub classroom first so
that the other person can join the team second. Do not join anyone’s team unless you have
communicated about doing so ahead of time. If you are working alone, it appears you’ll still
need to come up with a team name. Once your repository is ready, you’ll want to find its Clone link
and be sure you choose the SSH option that begins with git@github.com:comp590-.... Copy
that link to your clipboard.

While logged in to your VM in a terminal, issue the following commands and replace the words in
<tags> with the values specific to you:

$ cd $HOME
$ git clone <paste>
$ cd <repo>

You should go ahead and edit Cargo.toml to have your name(s) in it and fill in the honor pledge
in src/main.rs.

Grading Rubric Breakdown

Autograding Levels

Basic tests for all levels will be released as soon as they’re ready. On the deadline, as per the thdc
problem set, a complete suite of tests will be added.

1. 10 points - Useful Command-line Flag Support for --help
2. 30 points - Tokenization Debug Output via -t or --tokens
3. 50 points - Parsing Debug Output via -p or --parse

Hand-graded Points

1. 10 points - README Design Documentation, Code Style & Documentation, Appropriate
Use of Multiple Files to Organize Project

2. 10 points - Unit Tests

5

https://classroom.github.com/g/9iLvreB7

	Overview
	Lexemes of thegrep
	Grammar of thegrep
	Token and AST Enumeration Types
	Command Line Options
	The --tokens Flag
	The --parse Flag

	Design Documentation
	Getting Started
	Grading Rubric Breakdown

