Extending thegrep

PS07 - COMP590 - Spring 2019

Overview

In the third part of thegrep you will extend its capabilities across three dimensions:

1. Given a regular expression, generate random strings that match it with the addtion of
a —-g or ——gen flag to the program.

2. Implement operator overloading on NFA such that you can concatenate two NFA structs
with the + operator.

3. Add the extended regular expression operator for one-or-more occurrences (+).
This part of the problem set gives experience with:

1. Relying upon documentation from public, open source projects to provide specific
functionality without reinvention.

2. Growing the scope of a program across many cross-cutting layers of its implementation.

Getting Started

This assignment will extend your previous version of thegrep and you should use it as your
starting point.

Part 1 - Generating Random Acceptable Input Strings

Add a command-line flag to generate random, acceptable input strings given a regular
expression. Example usage:

$ cargo run -- -g 4 'omg(loll*| ha(ha)*)*'
omg ha lol

omg hahahaha ha

omg lolll loll

omg

$ cargo run -- --gen 3 '(tarrx|heeex1ll*ss*)'
tarr

heelssss

heeeellllsss

$ cargo run -- -g 5 'pass: s.a.f.e'
pass: sLauf2e
pass: sQalfve
pass: sQaKfFe
pass: sKa4dfle
pass: s2aZfde

For documentation on how to add a command-line argument that takes a number parameter,
please refer to the structopt documentation: https://docs.rs/structopt/0.2.15/structopt/

To generate random values you should make use of the rand crate:

o Crate: https://crates.io/crates/rand
o Crate Documentation: https://rust-random.github.io/rand/rand/index.html

An intended challenge of this part of the problem set is figuring out how to use a 3rd party
library on your own. For generating a random boolean, consider the random function. For
generating a random char, consider the Alphanumeric distribution. You should put some
effort into properly using these components of the rand crate as their example uses may not
match your exact need.

You should add at least a few unit tests to test this functionality. In your unit test you are
permitted to rely upon the assumption your accepts method is properly implemented (and
tested) separately.

https://docs.rs/structopt/0.2.15/structopt/
https://crates.io/crates/rand
https://rust-random.github.io/rand/rand/index.html

Part 2 - Operator Overloading

Overload the addition operator of NFA such that you can concatenate two NFA structs with +
to result in a new NFA struct. Refer to Midterm 1’s question 6.2 on Gradescope, “Suppose
you want to override the addition operator for NFA...”

Please note there is already a private helper method defined on NFA named add. One of the
challenges in adding new capabilities to existing programs is overcoming design decisions
made without knowing of future extensions. The private add method will conflict with
the Add trait’s add method. You should begin by renaming the existing add method to
something else descriptive and meaningful besides add before attempting to introduce the
addition operator overload.

One simplification was made in the pseudo-code of the midterm to avoid bogging you down
in unnecessary detail: NFA’s from constructor returns a Result. More accurate example
usages look like this:

let ab = NFA::from("ab") .unwrap() ;
let cd = NFA::from("cd") .unwrapQ);
let abcd = ab + cd;

assert! (abcd.accepts("abcd"));
assert! (labcd.accepts("abcde"));

let a_star = NFA::from("a*").unwrap();
let b_star = NFA::from("b*") .unwrap();
let ab = a_star + b_star;
assert!(ab.accepts("a"));
assert!(ab.accepts("b"));

assert! (ab.accepts("ab"));

assert! (ab.accepts("aabbb"));

Words of Wisdom: Before you begin any code, generate DOT diagrams of the LHS and the
RHS of the two examples above paying particularly close attention to each state’s ID. Then,
draw out what the resulting NFA should look like with careful consideration to what each
state’s ID in the resulting NFA will be. For simplicity’s sake in this part of the assignment,
your NFA is permitted to have a second, dummy Start state in the middle of the NFA at
the point of concatenation.

The introduction of the addition operator is primarily for conceptual exposure and practice
with the problems of operator overloading and relocation in memory. This operator will not
be accessible via any command-line functionality. It would be useful if you were building
a regular expression library, though. As such, unit tests must be written to prove its
functionality. Be sure your unit tests cover the test cases above, as well as test cases where
alternation is the topmost level operator of the right-hand side. These will be checked in
hand grading not in autograding.

https://en.wikipedia.org/wiki/Relocation_(computing)

Part 3 - Extending the Regular Expression Syntax with Kleene Plus

The final part of this problem set adds the Kleene Plus (“one-or-more times”) operator to
your regular expression engine’s capabilities. After completing this part of the problem set,
the following tokens and parse outputs are expected:

$ cargo run -- --tokens 'abl|().x*+'
Char('a')

Char('b")

UnionBar

LParen

RParen

AnyChar

KleeneStar

KleenePlus

$ cargo run -- --parse '.+'
OneOrMore (AnyChar)

You will need to add your own variants to Token and AST. You should add test cases for
the Kleene plus. Once added, your program should properly filter against the pattern (some
matches omitted):

$ cargo run -- 'uu+' ~/dict
continuum

continuums

muumuu

muumuus

vacuum

vacuumed

vacuuming

vacuums

Finally, the --gen flag of Part 1 should also produce acceptable strings for patterns that
utilize the Kleene Plus. Why should the —--gen functionality just work without special effort
to handle the Kleene Plus?

Grading Rubric Breakdown

Autograding will only test Part 1 and Part 3’s implementation.

1. 30pts - Part 1. --gen flag.
2. 30pts - Part 3. Kleene Plus implementation.

Hand-graded Points

1. 30 points - Part 2. Concatenation implementation.
2. 10 points - Unit tests for Part 1 and Part 3.

	Overview
	Getting Started
	Part 1 - Generating Random Acceptable Input Strings
	Part 2 - Operator Overloading
	Part 3 - Extending the Regular Expression Syntax with Kleene Plus
	Grading Rubric Breakdown

